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Examples

Poverty in Rwanda (predict)

ECONOMICS

Predicting poverty and wealth from
mobile phone metadata

Joshua Blumenstock,™ Gabriel Cadamuro,” Robert On®

Accurate and timely estimates of population characteristics are a critical input to social
and economic research and policy. In industrialized economies. novel sources of data are
enabling new approaches to demographic profiling. but in developing countries, fewer
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Prices in Argentina (measuremen
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Online and official price indexes; Measuring Argentina’s inflation
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Sales tax in the US (causal effect)

Sales Taxes and Internet Commerce

Liran Einav

Dan Knoepfle
Jonathan Levin
Neel Sundaresan

AMERICAN ECONOMIC REVIEW
VOL. 104, NO. 1, JANUARY 2014
(pp-1-26)
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Big data, learning, mining and econometrics

Big data vs. standard statistics

Standard statistics

@ How to get the most out of few data?
@ Solution: structured data (survey sampling)

@ Approach: complex sampling to approximate random sampling
(slow and expensive).

Big Data
Lots of data (Volume)

@ Lots of unstructured data (Variety)
@ Lots of unstructured, immediate data (Velocity)
@ Cheap
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Econometrics

Walter Sosa-Escudero Big Data: Perspectives for Economists

Y =/f(X)+u

Interest in f(.) (marginal effects).
Model? Theory, well designed experiment.
Mostly causal effects.

Probabilistic (standard errors, test)

Good? Unbiased/consistent/valid inference.
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Machine/Statistical Learning

Y=fX)+u

Interest in Y': predict, classify, measure.
Model? No model. We learn it.

Point estimate (no inference).

e 6 o6 o

Good? Predictive performance. Out of sample.
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Example: LASSO

@ A =0 back to OLS.

@ A # 0 biased but....

@ ... can always outperform OLS in prediction.

@ Bias is capital sin in econometrics (not in ML).
o

ML Idea: bias can reduce variance dramatically.

This is ridge regression. LASSO replaces 32 with |B].
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Model assessment

@ Econometric etiquette: ex-ante. Good theory, clean
identification (consistency). Robust inference.

@ Machine learning: ex-post, iterative. Cross validation.

@ Cross validation: keep data out to ‘test’ the accuracy of the
model. Switch roles. ‘Learn’ model to maximize predictive
accuracy through cross validation.

@ Machine learning builds rather than estimates a model, guided
by out of sample predictive/measurement ability.
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Policy evaluation requires causal and predictive analysis

Kleinberg, Ludwig, Mullainathan and Obermeyer (2015):

e Hip replacement surgery: effectiveness of surgery (causal) and
life expectancy (predictive).

@ Crime: release policies depend on effectiveness of mechanism
(Shargrodsky and Di Tella, 2013) and predicted probability of
commiting a crime.

@ Unemployment: training depends on effectiveness of program
(causal) and expected unemployment (prediction)
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Warnings

Dependencies (do we really get big data?)

Choice based sampling (i.e., informal markets)

Non observed counterfactuals (can we really get all data?).
Correlation fallacy.

Transparency / privacy.

Black box (deep learning, forests, etc.)

Social/political consensus.
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Opportunities

e Big data is not just lots but more data (small or big).

@ Can identify non-linearities and heterogeneities. Bypass the
‘curse of dimensionality’

e Fast (crucial for policy). Goggle Flu Trends. Price scrapping.

@ Easy and inexpensive experimentation. Crucial for causal uses.

@ Supplements standard official statistics (not replace).

e Coverage (Rwanda). Rural vs. urban.
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Links

Sales Taxes and Internet Commerce peprivation and the Dimensionality of Welfare: A
Variable-Selection Cluster-Analysis Approach
(German Caruso, Walter Sosa£scudero £ Marcela Svarc
Firstpublished: 61

DOE: 10,117 1irom

AMERICAN ECONOMIC REVIEW Machine Learning Methods for Estimating
Ll s Heterogeneous Causal Effects

ZADP No, 201

Google Econometrics and Unemployment Forecasting
[r— Machine Learning Methods for Demand
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