Big Data: Perspectives for Economics and Applied Econometrics

Walter Sosa-Escudero

Universisad de San Andrés and CONICET, Argentina

wsosa@udesa.edu.ar • @wsosaescudero • waltersosa.weebly.com

Examples Big data, learning, mining and econometrics

Poverty in Rwanda (predict)

ECONOMICS

Predicting poverty and wealth from mobile phone metadata

Joshua Blumenstock,¹⁺ Gabriel Cadamuro,² Robert On³

Accurate and timely estimates of population characteristics are a critical input to social and economic research and policy. In industrialized economies, novel sources of data are enabling new approaches to demographic profiling, but in developing countries, fewer 1.1.1.1.1.1 Kigali

<ロト <部ト < 注ト < 注ト

Examples

Big data, learning, mining and econometrics

Prices in Argentina (measurement)

Online and official price indexes: Measuring Argentina's inflation

Alberto Cavallo*

Manachusetti Initinte of Technologi, Illus School of Management, 77 Manachusetti Ave 252-512, Cambridge, MA 02139, USA

Price Index

< □ > < 同 > < 三 >

Examples Big data, learning, mining and econometrics

Sales tax in the US (causal effect)

Sales Taxes and Internet Commerce

Liran Einav

Dan Knoepfle

Jonathan Levin

Neel Sundaresan

AMERICAN ECONOMIC REVIEW VOL. 104, NO. 1, JANUARY 2014 (pp. 1-26)

- 4 同 6 4 日 6 4 日 6

Big data vs. standard statistics

Standard statistics

- How to get the most out of few data?
- Solution: structured data (survey sampling)
- Approach: complex sampling to approximate random sampling (slow and expensive).

Big Data

- Lots of data (Volume)
- Lots of unstructured data (Variety)
- Lots of unstructured, immediate data (Velocity)
- Cheap

Econometrics

$$Y = f(X) + u$$

- Interest in f(.) (marginal effects).
- Model? Theory, well designed experiment.
- Mostly causal effects.
- Probabilistic (standard errors, test)
- Good? Unbiased/consistent/valid inference.

Examples Big data, learning, mining and econometrics

Machine/Statistical Learning

$$Y = f(X) + u$$

- Interest in Y: predict, classify, measure.
- Model? No model. We learn it.
- Point estimate (no inference).
- Good? Predictive performance. Out of sample.

Example: LASSO

$$L(\beta) = \sum (y_i - x_i\beta)^2 + \lambda \beta^2$$

- $\lambda = 0$ back to OLS.
- $\lambda \neq 0$ biased but....
- ... can always outperform OLS in prediction.
- Bias is capital sin in econometrics (not in ML).
- ML Idea: bias can reduce variance dramatically.

This is ridge regression. LASSO replaces β^2 with $|\beta|$.

Model assessment

- Econometric etiquette: ex-ante. Good theory, clean identification (consistency). Robust inference.
- Machine learning: ex-post, iterative. Cross validation.
- Cross validation: keep data out to 'test' the accuracy of the model. Switch roles. 'Learn' model to maximize predictive accuracy through cross validation.
- Machine learning builds rather than estimates a model, guided by out of sample predictive/measurement ability.

Policy evaluation requires causal and predictive analysis

Kleinberg, Ludwig, Mullainathan and Obermeyer (2015):

- Hip replacement surgery: effectiveness of surgery (causal) and life expectancy (predictive).
- Crime: release policies depend on effectiveness of mechanism (Shargrodsky and Di Tella, 2013) and predicted probability of commiting a crime.
- Unemployment: training depends on effectiveness of program (causal) and expected unemployment (prediction)

Warnings

- Dependencies (do we really get big data?)
- Choice based sampling (i.e., informal markets)
- Non observed counterfactuals (can we really get all data?).
- Correlation fallacy.
- Transparency / privacy.
- Black box (deep learning, forests, etc.)
- Social/political consensus.

Opportunities

- Big data is not just lots but more data (small or big).
- Can identify non-linearities and heterogeneities. Bypass the 'curse of dimensionality'
- Fast (crucial for policy). Goggle Flu Trends. Price scrapping.
- Easy and inexpensive experimentation. Crucial for causal uses.
- Supplements standard official statistics (not replace).
- Coverage (Rwanda). Rural vs. urban.

Links

Walter Sosa-Escudero

Big Data: Perspectives for Economists

イロン 不同 とくほう イロン

э

References

- Survey I: Varian, H. R., 2014, Big data: New tricks for econometrics, Journal of Economic Perspectives, 28(2), 3-27.
- Survey II: Einav, L., and Levin, J., 2014, Economics in the age of big data. Science, 346(6210).
- Simple book: James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An introduction to statistical learning (Vol. 6). New York: Springer.
- Book: Murphy, K., 2012, Machine Learning: a Probabilistic Perspective, , MIT Press, Cambridge.
- Predictive: Blumenstock, J., Cadamuro, G., and On, R., 2015, Predicting poverty and wealth from mobile phone metadata. Science, 350(6264), 1073-1076.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Measurement: Cavallo, A. and Rigobon, R. 2016, The Billion Prices Project: Using Online Prices for Measurement and Research, Journal of Economic Perspectives, Vol. 30, 2, pp.151-78.
- Causal: Athey, S., and G. Imbens (2015), Machine Learning Methods for Estimating Heterogeneous Causal Effects, NBER working paper.
- Policy: Kleinberg, J., Ludwig, J., Mullainathan, S., and Obermeyer, Z., 2015, Prediction policy problems. The American Economic Review, 105(5), 491-495.
- Econometrics: Belloni, A., V. Chernozhukov, and C. Hansen, 2014, High-Dimensional Methods and Inference on Structural and Treatment Effects, Journal of Economic Perspectives, 28(2): 29-50.

・ 同 ト ・ ヨ ト ・ ヨ