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Classical linear model:

1 Linearity: Y = Xβ + u. X, an n×K random matrix, u, a
n× 1 random vector.

2 Strict exogeneity: E(u|X) = 0

3 No Multicollinearity: ρ(X) = K.

4 No heteroskedasticity/ serial correlation: V (u|X) = σ2In.

OLS Estimator: β̂ = (X ′X)−1X ′Y
Estimator of σ2: S2 =

∑2
i=1 e

2
i /(n−K).

Elementary econometrics courses spend considerable time deriving
these estimators
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Finite sample properties: properties of β̂ and S2 that can be
verified for any fixed sample size n.

The goal is to derive some basic properties that hold under the
classical linear model.
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Conditional Expectations

E(Y |X = x) =

∫
y fY |Xdy

Idea: how the expected value of Y changes when X changes. Seen
as a function of X, if X is a random variable, then E(Y |X) is a
random variable.
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Some Properties

Y = a+ bX + U , then E(Y |X) = a+ bX + E(U |X).

E(g(X)|X) = g(X)

E(Y |X) = E(Y ) if Y and X are independent.

E(Y |X, g(X)) = E(Y |X)

E(Y ) = E [E(Y |X)] (Law of Iterated Expectations).
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Finite Sample Properties of β̂

Properties of β̂

1 Unbiasedness: E(β̂) = β.

2 Variance: V (β̂) = σ2E
[
(X ′X)−1

]
.

3 Gauss/Markov Theorem: β̂ is the ‘best linear unbiased
estimator’.
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Unbiasedness: E(β̂) = β
First note:

β̂ = (X ′X)−1X ′Y

= (X ′X)−1X ′(Xβ + u)

= β + (X ′X)−1X ′u

By LIE E(β̂) = E[E(β̂|X)]

E(β̂|X) = β + E
[
(X ′X)−1X ′u|X

]
= β + (X ′X)−1X ′E [u|X]

= β (Since E(u|X) = 0)

Then, replacing above

E(β̂) = E[E(β̂|X)] = E(β) = β
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How does heteroskedasticity affect unbiasedness?

Normality?

Which assumptions do we use and which ones we don’t?
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Variance: V (β̂) = σ2E
[
(X ′X)−1

]
.

We need an extra result

Result: V (β̂) = E[V (β̂|X)] + V
[
E(β̂|X)

]
By unbiasedness, E(β̂|X) = β, so V (β) = 0. Hence, we only need
to get the first term.
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V (β̂|X) = V (β̂ − β|X) (β is not-random)

= V
[
(X ′X)−1X ′u|X

]
(from previous proof...)

= E
[
(X ′X)−1X ′uu′X(X ′X)−1 |X

]
= (X ′X)−1X ′E(uu′|X)X(X ′X)−1

= (X ′X)−1X ′σ2InX(X ′X)−1 (by Assumption 4)

= σ2(X ′X)−1

Now, going back to our previous result.

V (β̂) = E
[
σ2(X ′X)−1

]
= σ2E

[
(X ′X)−1

]
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Gauss/Markow Theorem: β̂ is the best linear unbiased estimator.

Formally: For the classical linear model, for any linear unbiased
estimator β̃,

V (β̃|X)− V (β̂|X) ≥ 0

that is, V (β̃|X)− V (β̂|X) is a positive semidefinite matrix.

Before attacking the proof: ‘better’ stands for ‘smaller variance’.
So the GMT says that among all linear and unbiased estimators of
β for the classical linear model, β̂ is the ‘best’

It is a rather restrictive notion.
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Proof:

β̃ linear: there is AK×n that depends on X, with rank K, such
that β̃ = AY .
Under the classical linear model

E(β̃|X) = E(AY |X) = E (A(Xβ + u)|X) = AXβ (1)

β̃ unbiased:
E(β̃|X) = β (2)

β̃ linear and unbiased: (1) and (2) hold simultaneouly. This
requires AX = I.
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Trivially, β̃ = β̂ + β̃ − β̂ ≡ β̂ + γ̂, with γ̂ ≡ β̃ − β̂.

Note that: V (β̃|X) = V (β̂|X) + V (γ̂|X) iff Cov(β̂, γ̂|X) = 0.

So if we prove Cov(β̂, γ̂|X) = 0, we have the result. Why?
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First note that trivially E(γ̂|X) = 0 (Why?)

Hence: Cov(β̂, γ̂ | X) = E[(β̂ − β)γ̂′ | X]

Note that

γ̂ = AY − (X ′X)−1X ′Y

= (A− (X ′X)−1X ′)Y

= (A− (X ′X)−1X ′)(Xβ + u)

= (A− (X ′X)−1X ′)u (since AX = I)
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Now replace to get:

Cov(β̂, γ̂ | X) = E[(β̂ − β)γ̂′ | X]

= E[(X ′X)−1X ′)uu′(A− (X ′X)−1X ′)′ | X]

= σ2[(X ′X)−1X ′(A′ −X(X ′X)−1)]

= σ2[(X ′X)−1X ′A′ − (X ′X)−1X ′X(X ′X)−1)]

= 0

where we used V (u|X) = E(uu′|X) = σ2In, and, again, AX = I.
So, by our previous argument we get:

V (β̃ | X)− V (β̂ | X) = V (γ̂ | X)

which is by construction positive semidefinite.
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Can we obtain an ‘unconditional’ version of the Gauss-Markow
Theorem? Yes!

I’ll leave it as an exercise. See Problem 4b) (pp.32) in Hayashi’s
text.
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On exogeneity

Assumption 2: Strict Exogeneity

E(ui|X) = 0, i = 1, 2, . . . , n

In basic courses it is assumed that E(ui) = 0. Which one is
stronger?
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Implications of strict exogeneity:

E(ui) = 0, i = 1, . . . , n.
Proof: By the law of iterated expectations and strict
exogeneity:

E(u) = E[E(u|X)] = E(0) = 0

In words: on average, the model is exactly linear.

E(xjkui) = 0, j, i = 1, . . . , n; k = 1, . . . ,K

In words: explanatory variables are uncorrelated with the error
terms of all observations.
Proof: as exercise.
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Finite Sample Properties of S2

Remember that we proposed:

S2 =

∑
e2i

n−K
=

e′e

n−K

as an estimator for σ2.

Result: S2 is unbiased (E(S2|X) = σ2)
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Trace: Let A be a square m×m matrix. Its trace of A is the sum
of all its principal diagonal elements: tr(A) =

∑m
i=1Aii.

Simple properties:

If A is a scalar, trivially tr(A) = A

tr(AB) = tr(BA)

tr(AB) = tr(A) + tr(B)

The M matrix: M ≡ In −X(X ′X)−1X ′

Some properties (check as homework)

M =M ′ (symmetric), M =MM (idempotent)

tr(M) = n−K
e =Mu.

e = Y −Xβ̂ = Y −X(X′X)−1X′Y = (I −X(X′X)−1X′)Y = MY = MXβ +Mu. Now

note that MX = (I −X(X′X)−1X′)X = X −X(X′X)−1X)X = 0.
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Proof:

E(S2 | X) =
E(e′e | X)

n−K
=

E(u′M ′Mu | X)

n−K

=
E(u′Mu | X)

n−K

=
E(tr(u′Mu) | X)

n−K

=
E(tr(uu′M) | X)

n−K

=
tr(E(uu′M | X))

n−K

=
tr(σ2InM)

n−K

=
σ2tr(M)

n−K
= σ2
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Hypothesis Testing

Assumption 5: normality. u|X is normally distributed (it is a
vector, so this involves the multivariate normal).

Note that this together with the classical assumptions imply

u|X ∼ N(0, σ2In)

Remember that β̂ = β + (X ′X)−1X ′u.Then

β̂ |X ∼ N
(
β, σ2(X ′X)−1

)
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Hypothesis about single coefficients

H0 : βj = βj0 vs. HA : βj 6= βj0

Let ais denote de (i, s) element of (X ′X)−1.
Then, when H0 is true β̂j − βj0 ∼ N(0, σ2ajj) so

zj ≡
β̂j − βj0√
σ2ajj

∼ N(0, 1)

Note that σ2ajj = V (βj).

Special case: βj0 = 0 ‘significance hypothesis’.

The distribution of zk does not depend on X.

If σ2 is observed, reject if zj lies outside an acceptance region.
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The problem is that σ2 is not observed. Define:

tj ≡
β̂j − βj0√
S2ajj

which is zk with σ2 replaced by its unbiased estimator S2.

Result: Under assumptions 1 to 5 and when H0 holds,
tj ∼ t(n−K).
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Hypothesis about linear combinations of β.

H0 : c
′β − r = 0 vs. HA : c′β − r 6= 0, c ∈ <K , r ∈ <.

WLOG, supose K = 3 so,

Yi = β1X1i + β2X2i + β3X3i + ui i = 1, . . . , n

Consider the following hypotheses:

a) H0 : β2 = β3, or H0 : β2 − β3 = 0. In this case
c = (0, 1,−1) and r = 0.

b) H0 : β2 + β3 = 1, so now c = (0, 1, 1) and r = 1.
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To derive an appropiate test statistic note:

c′β̂ − r ∼ N(0, σ2c′(X ′X)c) ∼ N(0, 1)

So

z =
c′β̂ − r√

σ2c′(X ′X)c)
∼ N(0, 1)

And again, by the same argument as before, a ‘feasible’ version is

t =
c′β̂ − r√

S2c′(X ′X)−1c)
∼ t(n−K)
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As a simple exercise, the appropriate statistics for the cases
considered before are

a) c′β̂ − r = β̂2 − β̂3 and

σ2c′(X ′X)−1c = V̂ (β2) + V̂ (β2)− 2Ĉov(β̂1, β̂2), so

t =
β̂2 − β̂3

V̂ (β2) + V̂ (β2)− 2Ĉov(β̂1, β̂2)

b) c′β̂ − r = β̂2 + β̂3 − 1, and

σ2c′(X ′X)−1c = V̂ (β2) + V̂ (β2) + 2Ĉov(β̂1, β̂2), so

t =
β̂2 + β̂3 − 1

V̂ (β2) + V̂ (β2) + 2Ĉov(β̂1, β̂2)
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Multiple Linear Hypothesis

H0 : Rβ − r = 0, R is a q ×K matrix with ρ(R) = q, and r ∈ <q

Example. In our previous case consider the multiple hypothesis

H0 : β2 = 0 : β3 = 0

These are actually two joint hypothesis about the coefficient vector
β. In this case

R =

[
0 1 0
0 0 1

]
r =

[
0
0

]
with q = 2. r is the number of restrictions.

• What is the ‘full row rank’requirement, ρ(R) = q, asking for?
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Consider the following test statistic:

F =
(Rβ̂ − r)′

[
R(X ′X)−1R′

]−1
(Rβ̂ − r)′ / q

S2

Result: under all assumptions and when H0 is true,
F ∼ F (q, n−K).

Intuition: Note that V (Rβ̂) = σ2R(X ′X)−1R′. Then,
V̂ (Rβ̂) = S2R(X ′X)−1R′, so

F = (Rβ̂ − r)′V̂ (Rβ̂|X)−1(Rβ̂ − r)′ / q

F is actually checking how large Rβ̂ − r is.
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