Large-Sample Robust and Non-linear Inference

Walter Sosa-Escudero

May 14, 2017

Motivation

. reg ltc lq lpl lpf lpk

ltc		Std. Err.				Interval]
1q		.0174337		0.000	.6864462	.7553808
lpl	.4559645	.299802	1.52	0.131	1367602	1.048689
lpf	.4258137	.1003218	4.24	0.000	.2274721	.6241554
lpk	2151476	.3398295	-0.63	0.528	8870089	.4567136
_cons	-3.566513	1.779383	-2.00	0.047	-7.084448	0485779

Standard practice under heteroskedasticity

. reg ltc lq lpl lpf lpk, robust

 1tc	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]	
lq l	.7209135	.0325376	22.16	0.000	.656585	.785242	
lpl	.4559645	. 260326	1.75	0.082	0587139	.9706429	
lpf	.4258137	.0740741	5.75	0.000	. 2793653	.5722622	
lpk	2151476	.3233711	-0.67	0.507	8544698	.4241745	
_cons	-3.566513	1.718304	-2.08	0.040	-6.963693	1693331	

Where does 'robust' come from? Does it work?

Ladies' and gentlemen's agreement:

Stupid algebraic steps will be left for homework. Sign here:

Cauchy-Schwartz inequality

$$E(X,Y)^2 \le E(X^2) \ E(Y^2)$$

Recall (asympototic normality of linear model):

$$\sqrt{n}\left(\hat{\beta}_n - \beta_0\right) \stackrel{p}{\to} N(0, \Sigma_x^{-1} S \Sigma_x^{-1})$$

where $\Sigma_x = E(x_i x_i')$ and $S = V(x_i u_i)$.

Notation: $AV(\hat{\beta}_n) \equiv \Sigma_x^{-1} S \ \Sigma_x^{-1}$. We need a consistent estimate of $AV(\hat{\beta}_n)$

- Note that $n^{-1}X_i'X_i$ is a consistent estimator for Σ_x .
- Recall we are allowing for heteroskedasticity. Alternative consistent estimators for S depend on what we are willing to assume on this.

Variance estimation under homoskedasticity

Under homoskedasticity $E(u_i^2|x_i) = \sigma_0^2$. Using using LIE:

$$S = E(u_i^2 x_i x_i') = \sigma_0^2 E(x_i x_i') = \sigma_0^2 \Sigma_x$$

So

$$AV(\hat{\beta}_n) = \Sigma_x^{-1} S \Sigma_x^{-1} = \sigma_0^2 \Sigma_x^{-1} \Sigma_x \Sigma_x^{-1} = \sigma_0^2 \Sigma_x^{-1}$$

Hence a consistent estimator for $AV(\hat{\beta}_n)$ can be

$$\widehat{\mathsf{AV}}_h = n \ s^2 (X'X)^{-1}$$

n times the classical estimator.

Heteroskedsaticity robust variance estimation

Can we estimate $AV(\hat{\beta}_n) = \Sigma_x^{-1} S \; \Sigma_x^{-1}$ without assuming homoskedasticity?

Recall $S=E(x_iu_iu_ix_i')=E(u_i^2x_ix_i').$ We will need an additional assumption

Assumption (fourth moments): $E[(x_{ik}x_{ij})^2]$ exists and is finite for all k, j = 1, 2, ..., K.

Result

$$\hat{S}_w \equiv \frac{1}{n} \sum_{i=1}^n e_i^2 x_i x_i' \stackrel{p}{\to} S$$

where e_i 's are OLS residuals.

Proof:

$$e_{i} = y_{i} - x'_{i}\hat{\beta} = y_{i} - x'_{i}\beta - x'_{i}(\hat{\beta} - \beta) = u_{i} - x'_{i}(\hat{\beta} - \beta)$$

$$e_{i}^{2} = u_{i}^{2} - 2u_{i}x'_{i}(\hat{\beta} - \beta) + (\hat{\beta} - \beta)'x_{i}x'_{i}(\hat{\beta} - \beta)$$

Replacing

$$\frac{1}{n} \sum_{i=1}^{n} e_i^2 x_i x_i' = \frac{1}{n} \sum_{i=1}^{n} u_i^2 x_i x_i' - \frac{2}{n} \sum_{i=1}^{n} u_i x_i' (\hat{\beta} - \beta) x_i x_i' + \frac{1}{n} \sum_{i=1}^{n} (\hat{\beta} - \beta)' x_i x_i' (\hat{\beta} - \beta) x_i x_i'$$

First note that

$$\frac{1}{n} \sum_{i=1}^{n} u_i^2 x_i x_i' \stackrel{p}{\to} E(u_i^2 x_i x_i')$$

by Kolmogorov's LLN, since we assumed finite second moments (expectaction exists) and iid.

We will show the other two terms converge to zero

I)
$$\mathbf{A} = \frac{2}{n} \sum_{i=1}^{n} u_i \ x_i'(\hat{\beta} - \beta) \ x_i x_i'$$

$$\mathbf{A} = \frac{2}{n} \sum_{i=1}^{n} u_i \left[\sum_{k=1}^{K} x_{ik} (\hat{\beta}_k - \beta_k) \right] x_i x_i'$$
$$= 2 \sum_{k=1}^{K} (\hat{\beta}_k - \beta_k) \left[\frac{\sum_{i=1}^{n} u_i x_{ik} \ x_i x_i'}{n} \right]$$

Note $\hat{\beta}_k - \beta_k \stackrel{p}{\to} 0$, by consistency. So if we can show $\left[\right] \stackrel{p}{\to} < \infty$, we are done.

 $\left[\frac{1}{n}\sum_{i=1}^n u_i x_{ik} \ x_i x_i'\right]$ is a $K \times K$ matrix with typical (h,j) element:

$$\frac{\sum_{i=1}^{n} u_i x_{ik} x_{ih} x_{ij}}{n}$$

By the Cauchy-Schwartz inequality:

$$E|x_{ik}x_{ih}x_{ij}u_i| \le E[|x_{ik}x_{ih}|^2]^{1/2} E[|x_{ij}u_i|^2]^{1/2}$$

Both factors in the RHS are $< \infty$, by our fourth moments assumption 5 and by assumption 3. Hence, we can use the LLN:

$$\frac{1}{n} \sum_{i=1}^{n} u_i x_{ik} \ x_i x_i' \stackrel{p}{\to} E(u_i x_{ik} x_i x_i') < \infty,$$

so by the product rule and continuity, $\mathbf{A} \stackrel{p}{\to} 0$.

II)
$$\mathbf{B} = \frac{1}{n} \sum_{i=1}^{n} (\hat{\beta} - \beta)' x_i \ x_i' (\hat{\beta} - \beta) \ x_i x_i'$$

Using the same trick as before:

$$\mathbf{B} = \frac{1}{n} \sum_{i=1}^{n} \left[\sum_{k=1}^{K} x_{ik} (\hat{\beta}_k - \beta_k) \right] \left[\sum_{k'=1}^{K} x_{ik'} (\hat{\beta}_{k'} - \beta_{k'}) \right] x_i x_i'$$

Now we have a sum of K^2 matrices. The (h,j) element of the k,k^\prime summand will be

$$(\hat{\beta}_k - \beta_k)(\hat{\beta}_{k'} - \beta_{k'}) \frac{1}{n} \sum_{i=1}^n x_{ik} x_{ik'} x_{ih} x_{ij}$$

Using again the Cauchy Schwartz inequality and the finite fourth moments assumption: $E|x_{ik}x_{ik'}x_{ih}x_{ij}|<\infty$

And again, by consistency and LLN, $\mathbf{B} \stackrel{p}{\to} 0$. q.e.d.

Then, using \hat{S}_w as an estimator for S and noting

$$\hat{S}_w = \frac{1}{n} \sum_{i=1}^n e_i^2 x_i x_i^2 = \frac{1}{n} (X'BX)$$

with $B \equiv \operatorname{diag}(e_1^2,\dots,e_n^2)$,

$$\widehat{\mathsf{AV}}_w(\hat{\beta}_n) = \hat{\Sigma}_x^{-1} \hat{S}_w \hat{\Sigma}_x^{-1}$$

$$= n(X'X)^{-1} n^{-1} (X'BX) n(X'X)^{-1}$$

$$= n(X'X)^{-1} (X'BX) (X'X)^{-1}$$

This is White's heteroskedasticity consistent estimator for the asymptotic variance of $\hat{\beta}_n$. Remember that in the derivation of all result we never ruled out the possibility of conditional heteroskedasticity, then its consistency *does not* depend on it.

Returns-to-scale:

. reg ltc lq lpl lpf lpk

ltc	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lq	.7209135	.0174337	41.35	0.000	.6864462	.7553808
lpl	.4559645	.299802	1.52	0.131	1367602	1.048689
lpf	.4258137	.1003218	4.24	0.000	. 2274721	.6241554
lpk	2151476	.3398295	-0.63	0.528	8870089	.4567136
_cons	-3.566513	1.779383	-2.00	0.047	-7.084448	0485779

. reg ltc lq lpl lpf lpk, robust

 1tc	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
lq	.7209135	.0325376	22.16	0.000	.656585	.785242
lpl	.4559645	.260326	1.75	0.082	0587139	.9706429
lpf	.4258137	.0740741	5.75	0.000	.2793653	.5722622
lpk	2151476	.3233711	-0.67	0.507	8544698	.4241745
_cons	-3.566513	1.718304	-2.08	0.040	-6.963693	1693331

The Delta Method

Suppose we want to perform inference about a non-linear function of β , say $a(\beta)$.

Example 1

$$y_i = \beta_0 + \beta_1$$
south $+ z_i' \beta_2 + u_i$

 y_i is log-wages, *south* is a dummy indicating if the person lives in the southern region z_i is a vector of control variables.

The percent difference between south/not south is given by

$$\gamma \equiv e^{\beta_1} - 1$$

and for small values of β_1 is very similar to β_1 . Suppose we are interested γ exactly. A consistent estimator is $e^{\hat{\beta}_1}-1$. A natural problem is how to construct a confidence interval for γ .

Example 2: consider now

$$y_i = \beta_1 \text{ exper } + \beta_2 \text{ exper}^2 + z_i'\beta + u_i$$

where *exper* is work experience in years. The level of experience that maximizes expected wages is:

$$\gamma \equiv -\frac{\beta_1}{2\beta_2}$$

and a consistent estimate is provided by

$$\hat{\gamma} = -\frac{\hat{\beta}_1}{2\hat{\beta}_2}$$

How can we construct an estimate for the standard deviation of a confidence interval for γ ?

Result (Delta Method): suppose x_n is a sequence of random vector of dimension K such that

$$x_n \stackrel{p}{\to} \beta$$
 and $\sqrt{n}(x_n - \beta) \stackrel{d}{\to} Z$

and $a(x): \Re^K \to \Re^r$ is a function with continuous derivatives

$$A(\beta) \equiv \frac{\partial a(\beta)}{\partial \beta'}$$

(note $A(\beta)$ is an $r \times K$ matrix).

Then:

$$\sqrt{n} \left[a(x_n) - a(\beta) \right] \stackrel{d}{\to} A(\beta) Z$$

Proof: Take a first-order mean value expansion of $a(x_n)$ around β :

$$a(x_n) = a(\beta) + A(y_n) (x_n - \beta)$$

where the 'mean value' y_n is a vector between x_n and β . From this, get

$$\sqrt{n}[a(x_n) - a(\beta)] = A(y_n)(x_n - \beta)$$

Now $y_n \stackrel{p}{\to} \beta$ (why?) so $A(y_n) \stackrel{p}{\to} A(\beta)$ by continuous differentiability.

Then, by the hypothesis of the theorem and Slutzky's Theorem

$$\sqrt{n} \left[a(x_n) - a(\beta) \right] \stackrel{d}{\to} A(\beta) Z$$

As a simple corollary note that if

$$\sqrt{n}(\hat{\beta}_n - \beta) \stackrel{d}{\to} N(0, \mathsf{AV}(\hat{\beta}_n))$$

then

$$\sqrt{n} \, \left[a(\hat{\beta}_n) - a(\beta) \right] \overset{d}{\to} N \Big(0, A(\beta) \mathsf{AV}(\hat{\beta}_n) A(\beta)' \Big)$$

Example 1 (Blackburn and Neumark, 1992, also in Wooldridge, 2002)

$$y_i = \beta_0 + \beta_1 \text{ south } + z_i'\beta_2 + u_i$$

$$a(\beta_1) = e^{\beta_1} - 1$$

with

$$A(\beta_1) = e^{\beta_1}$$

So, according to the delta-method

$$\widehat{\mathsf{AV}}\left(e^{\hat{eta}_1} - 1\right) = \left[e^{\hat{eta}_1}\right]^2 \mathsf{AV}(\hat{eta}_1)$$

. reg lwage exper tenure married black south urban educ

lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
exper	.014043	.0031852	4.41	0.000	.007792	.020294
tenure	.0117473	.002453	4.79	0.000	.0069333	.0165613
married	.1994171	.0390502	5.11	0.000	.1227801	.276054
black	1883499	.0376666	-5.00	0.000	2622717	1144281
south	0909036	.0262485	-3.46	0.001	142417	0393903
urban	.1839121	.0269583	6.82	0.000	.1310056	.2368185
educ	.0654307	.0062504	10.47	0.000	.0531642	.0776973
_cons	5.395497	.113225	47.65	0.000	5.17329	5.617704

. nlcom exp(_b[south])-1

lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
	+					
nl 1	I - 0868943	0239677	-3.63	0.000	- 1339315	- 0398571

Example 2:

$$y_i = \beta_1 \text{ exper } + \beta_2 \text{ exper}^2 + z_i'\beta + u_i, \quad a(\beta_1, \beta_2) = -\beta_1/(2\beta_2)$$

. regress lwage edup edusi edus eduui eduu exper exper2 if muest==1

lwage	I	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	
edup	1	.2104513	.0629835	3.34	0.001	.0869123	.3339903	
edusi	1	.4148728	.0678469	6.11	0.000	.2817946	.547951	
edus	1	.7587112	.0695764	10.90	0.000	.6222406	.8951817	
eduui	1	1.018209	.077569	13.13	0.000	.866061	1.170356	
eduu	1	1.560496	.0769774	20.27	0.000	1.409509	1.711483	
exper	1	.0283668	.0071065	3.99	0.000	.0144279	.0423058	
exper2	1	0002502	.0001509	-1.66	0.098	0005462	.0000458	
_cons	1	.2130178	.0934142	2.28	0.023	.0297906	.3962449	

. nlcom -_b[exper]/(2*_b[exper2])

_nl_1: -_b[exper]/(2*_b[exper2])

lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_nl_1	56.6962	20.7191	2.74	0.006	16.05673	97.33567