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Consider the following data set

The explained variable is binary.

Admission to grad school depending on GRE score, Families send
kids to school as a function of income, etc.
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This case is a good candidate for a non-linear model

Walter Sosa-Escudero Maximum Likelihood Estimation



Motivation: a non-linear model
Likelihood and Maximum-Likelihood

Asymptotic properties

How to search for a model and estimate its parameters?

Consider the following non-linear model

E(y|x) = F (β1 + β2x), F (z) =
∫ z

−∞

1√
2π
e
s2

2 ds

For example, positive values for β1 may produce a function
that looks like the one in the previous graph (we well get
β̂1 = −2.8619 and β̂2 = 6.7612.

This is a truly non-linear model (in both, parameters and
variables).

This is the probit model.
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In order to search for an estimation strategy for the parameters, we
will exploit the following fact.

Since y|x is a binary variable

E(y|x) = Pr(y = 1|x)

so, by being specific about the form of E(y|x) we are being
specific about Pr(y = 1|x).
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Likelihood and Basic Concepts

Z ∼ f(z; θ0). θo ∈ <K . f(z; θ) is a member of a parametric
class ‘indexed’ by θ.

Z̃ = (Z1, Z2, . . . , Zn)′ is an iid sample ∼ f(z; θ0).

The likelihood function for Z is

L(θ; z) : <K → < : f(z; θ)

In the density function θ is taken as given and z varies. In the
likelihood function these roles are reversed

Note that due to the iid assumption:

L(θ; z̃) = f(z̃; θ) = Πn
i=1f(zi; θ) = Πn

i=1L(θ; zi)
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Example: Z ∼ N(µ, σ2)

Here θ = (µ, σ2)′, and K = 2.

Note:

f(z; θ) : < → < : 1√
2πσ

exp
[
− (z−µ)2

2σ2

]
L(θ; z) : <2 → < : 1√

2πσ
exp

[
− (z−µ)2

2σ2

]
Intuitively, L(θ; z0) quantifies how compatible is any choice of θ
with the occurrence of z0.
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Maximum Likelihood

The maximum-likelihood estimator θ̂n is defined as

θ̂n ≡ argmax
θ

L(θ; z̃)

It is kind of a ‘reverse enginereeing’ process: to generate random numbers for a
certain distribution you first set parameter values and then get realizations.
This is doing the reverse process: first set the realizations and try to get the
parameters that are ‘most likely’ to have generated them.
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Some normalizations

θ̂n ≡ argmax
θ

L(θ; z̃)

Note

θ̂n = argmax
θ

lnL(θ; z̃)

and
∑n

i=1 lnL(θ; zi) =
∑n

i=1 l(θ; zi)
Also

θ̂n = argmax
θ

1
n

n∑
i=1

l(θ; zi)

We will use whichever one is more convenient.
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If l(θ; z̃) is differentiable and has a local maximum in an interior
point, then the FOC’s for the problem are

∂l(θ; z̃)
∂θ

∣∣∣∣
θ=θ̂n

=
n∑
i=1

∂l(θ; zi)
∂θ

∣∣∣∣
θ=θ̂n

= 0.

This is a system of K possibly non-linear equations with K
unknowns, that define θ̂n implicitely.

Even if we can guarantee that a solution to this problem
exists, we do not have enough information to ‘solve’ for θ̂.
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The discrete case

When Y is a discrete random variable, the likelihood function will
be directly the probability function, that is

L(Y ; θ) = f(y; θ)

where f(y : θ) is now Pr(Y = y; θ).
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Conditional likelihood

Suppose f(y, x, η) is the joint density function of two variables X
and Y . Then, it can be decomposed as

f(y, x ; η) = f(y|X ; θ)f(x;φ)

Suppose we are interested in estimating θ: if θ and φ are
functionally unrelated, then maximizing the joint likelihood is
achivied through maximizing separately the conditional and the
marginal likelihood: the MLE of θ also maximizes the conditional
likelihood: we can obtain ML estimates by specifying the
conditional likelihood only.
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Three Examples

Poisson Distribution: Y ∼ Poisson(µ) if it takes integer and
positive values (including zero) and:

f(y) = Pr(Y = y) =
e−λoλyo
y!

For an iid sample:

L(λ, Ỹ ) =
n∏
i=1

e−λλyi

yi!

its log is:

l(λ, Ỹ ) =
n∑
i=1

[−λ+ yi lnλ− ln yi!]

= −nλ+ lnλ
n∑
i=1

yi −
n∑
i=1

ln yi!
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FOC’s are

−n+
1
λ

n∑
i=1

yi = 0

so the MLE of λ is:

λ̂ =
1
n

n∑
i=1

yi = ȳ
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Probit Model:

Y |X ∼ Bernoulli(p), p ≡ Pr(Y = 1|x) = F (x′β), and F (z) is
the normal CDF.

The sample (conditional) likelihood function will be:

L(β, Ỹ ) =
∏

i/yi=1

pi
∏

i/yi=0

(1− pi) =
n∏
i=1

pyii (1− pi)1−yi
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Then

l(β, Ỹ ) =
n∑
i=1

[
yi lnF (x′iβ) + (1− yi) ln

(
1− F (x′iβ)

) ]
FOC’s for a local maximum are:

n∑
i=1

(yi − Fi)fixi
Fi(1− Fi)

= 0

,Fi ≡ F (x′iβ̂), fi ≡ f(x′iβ̂). This is a system of K non-linear
equations with K unknowns. Moreover, it is not possible to solve
for β̂ and obtain and explicit solution.
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Gaussian regression model:

y = x′β0 + u, with u|x ∼ N(0, σ2)

or, alternatively

y|x ∼ N(x′β0, σ
2) =

1√
2πσ

exp

[
−1

2

(
y − x′β0

σ

)2
]

Then

l(β, σ2; Ỹ ) = −n lnσ − n ln
√

2π − 1
2σ2

n∑
i=1

(yi − x′iβ)2

Any idea what will be the MLE of β0?
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Asymptotic Properties

We will follow a similar path as we did with other estimation
strategies

Consistency

Asymptotic Normality

Estimation of the asymptotic variance

Asymptotic efficiency

Invariance (this is new)

But first we need to agree on some regularity conditions
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Setup and Regularity Conditions

At this stage we will simply state them, and discuss them as we go along.

Some are purely technical, but some of them have important intuitive meaning.

1 Zi, i = 1, . . . , n, iid ∼ f(zi; θ0)
2 θ 6= θ0 ⇒ f(zi; θ) 6= f(zi; θ0).

3 θ ∈ Θ, Θ a compact set.

4 ln f(zi; θ) is continuous at each θ ∈ Θ w.p.1.

5 E
[

supθ∈Θ |ln f(z; θ)|
]
<∞.

These conditions will be used for consistency.
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In addition, for asymptotic normality we will add the following:

6 θ0 is an interior point of Θ.

7 f(z; θ) is twice continuously differentiable and strictly
poisitive in a neighborhood N of θ0.

8
∫

supθ∈N ‖∇θf(z; θ)‖ dz <∞ and∫
supθ∈N ‖∇θθf(z; θ)‖ dx <∞.

9 J ≡ E [s(θ0, Z)s(θ0, Z)′] exists and is non-singular.

10 E[supθ∈N ‖H(Z; θ)‖] <∞.
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Quick detour: on bounds.

Recall that:

|E(X)| < E(|X|)

Then by bounding E(|X|) we are guaranteeing that −∞ < E(X) <∞.

By considering something like E
[

supθ∈Θ |ln f(z; θ)|
]
<∞. we are

bounding the ‘worst case’ scenario (the sup of the absolute value).
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Consistency

Our starting point is the following normalized version of the MLE:

θ̂n = argmax
θ

Qn(θ), Qn(θ) ≡ 1
n

n∑
i=1

l(θ, Zi)

For consistency we need to establish the following three results

1 Qn(θ) converges uniformly in probability to
Q0(θ) ≡ E [l(θ, Z)].

2 Q0(θ) has a unique maximum at θ0.

3

Qn(θ)
up→ Q0(θ) ⇒ argmax

θ∈Θ
Qn(θ)︸ ︷︷ ︸

θ̂n

p→ argmax
θ∈Θ

Q0(θ)︸ ︷︷ ︸
θ0
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Intuition

θ̂n maximizes Qn(θ) (definition of MLE).

Qn(θ)→ Q0(θ) (the MLE problem if well defined at ∞).

θ0 maximizes Q0(θ) (the true value solves the problem at ∞).

By maximizing Qn(θ) we end up maximizing Q0(θ),
convergence of the sequence of functions guarantees
converges of maximizers. (this is the difficult step).

If argmaxQn(θ) is seen as function defined on functions, what property is

implied by 3)?
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1) Qn(θ) converges uniformly in probability to Q0(θ) ≡ E [l(θ, Z)]

If we fix θ at any point θ∗ then

Qn(θ∗) =
1
n

n∑
i=1

l(θ∗, Zi)
p→ E[l(θ∗, Z)]

since by our assumptions (which ones?), l(θ∗, Zi) is a sequence of
rv’s that satisfies Kolmogorov’s LLN.

This establishes pointwise convergence of Qn(θ) to Q0(θ). But our
strategy requires uniform convergence.

Walter Sosa-Escudero Maximum Likelihood Estimation



Motivation: a non-linear model
Likelihood and Maximum-Likelihood

Asymptotic properties

Uniform Convergence: a sequence of real valued functions fn
defined on a set S ∈ < converges uniformly to a function f on S if
for each ε > 0, there is a number N such that

n > N ⇒ |fn(x)− f(x)| < ε for all x ∈ S

Intuition: we are using the same ε for the whole domain, that is,
eventually we can put fn in the ‘strip’ f ± ε.

It can be shown that uniform convergence is equivalent to

sup
x∈S
|f(x)− fn(x)| → 0

(see Ross (1980, pp. 137))

Uniform convergence in probability: Qn(θ) converges uniformly in

probability to Q0(θ) means supθ∈Θ |Qn(θ)−Q0(θ)| p→ 0.
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Uniform LLN: if Zi are iid, Θ is compact and a(Zi, θ) is a
continuous function at each θ ∈ Θ wp1, and there is d(Z) with
‖a(z, θ)‖ ≤ d(Z) for all θ ∈ Θ and E[d(Z)] <∞, then E[a(z, θ)]
is continuous and n−1

∑n
i=1 a(Zi, θ) converges uniformly in

probability to E[a(Z, θ)] (Newey and West, 1994, pp. 2129).

In our case, a(Zi, θ) = l(θ, Zi), continuous on a compact set Θ,
the required bound is provided by our assumption

E
[

sup
θ∈Θ
|ln f(z; θ)|

]
<∞

and the desired result follows from the iid assumption.
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2) Q0(θ) has a unique maximum at θ0.

Information inequality: if θ 6= θ0 ⇒ f(z′iθ) 6= f(zi; θ0) and
E[|l(θ;Z)|] <∞ for all θ, then Q0(θ) = E[l(θ, Z)] has a unique
maximum at θ0.

E[l(θ0;Z)]− E[l(θ;Z)] = E[l(θ0;Z)− l(θ;Z)]

= E

[
− ln

f(Z, θ)
f(Z, θ0)

]
> − lnE

[
f(Z; θ)
f(Z; θ0)

]
Jensen’s inequality!

> − ln
∫

f(z; θ)
f(z; θ0)

f(z; θ0) dz

> − ln 1
> 0

Important: check where does the argument break down if assumptions do not hold.
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3) 1) and 2) imply consistency.

Pick any ε > 0. Let us get three inequalities wpa 1.

θ̂n maximizes Qn(θ), so

a) Qn(θ̂n) > Qn(θ0)− ε/3

Qn(θ) converges uniformly to Q0(θ), so Qn(θ̂n)−Q0(θ̂n) < ε/3,
hence

b) Q0(θ̂n) > Qn(θ̂n)− ε/3

and Q0(θ0)−Qn(θ0) < ε/3 hence

c) Qn(θ0) > Q0(θ0)− ε/3
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Now start with b)

Q0(θ̂n) > Qn(θ̂n)− ε/3
> Qn(θ0)− ε 2/3 Substract ε/3 in both sides of a)

d) Q0(θ̂n) > Q0(θ0)− ε Substract ε 2/3 in both sides of c)

Let N be an open subset of Θ containing θ0. N open implies
N c ∩Θ closed and bounded: compact in our case.

Since Q0(θ) is continuous (the uniform limit of a continuous
function is continuous) then:

sup
θ∈Θ∩N c

Q0(θ) = Q0(θ∗)

for some θ∗ ∈ Θ ∩N c (continuous functions over compact sets
achieve their maximum).
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Now since θ0 is the unique maximizer of Q0(θ),

Q0(θ∗) < Q0(θ0)

Now pick ε = Q0(θ0)−Q0(θ∗), then by inequality d), wpa1

Q0(θ̂) > Q0(θ∗)

so θ̂ ∈ N wpa1. (if not Q0(θ∗) would not be the sup).

Then using the definition of convergence in probability, since N
was chosen arbitrarily

θ̂n
p→ θ0
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Asymptotic normalilty

Asymptotic normality is a bit easier to establish since we will follow
a strategy very simimlar to what we did with all previous
estimators.

But first we need to establish some notation and results.

Score and hessian.

Score equality

Information matrix

Information matrix equality
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Score, Hessian and Information

Score: s(θ;Z) ≡ ∇θ l(θ;Z), a K × 1 vector.

Sample score: s(θ; Z̃) = ∇θ l(θ; Z̃) =
∑n

i=1 s(θ;Zi)
Hessian: H(θ;Z) ≡ ∇θθ′ l(θ;Z), a K ×K matrix.

Sample hessian: H(θ; Z̃) = ∇θθ′ l(θ; Z̃) =
∑n

i=1H(θ;Zi)
Information matrix: J ≡ E [s(θ0;Z)s(θ0;Z)′], an K ×K
matrix.

Score equality: E [s(θ0;Z)] = 0 (It is kind of a FOC of the likelihood inequality.)

Information equality: E [H(θ0;Z)] = −J

Note that this imples V [s(θ0;Z)]− J
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Proof of score equality (the continuous case):

For any θ ∫
f(z; θ) dz = 1

Taking derivatives in both sides

d[
∫
f(z; θ)dz)]
dθ

= 0

If it is possible to interchange differentiation and integration:∫
df(z; θ)
dθ

dθ = 0

The score is a log-derivative, so

s(θ; z) =
d ln f(z; θ)

dθ
=
df(z; θ)/dθ
f(z; , θ)
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hence
df(z; θ)/dθ = s(θ; z)f(z, θ)

Replacing above: ∫
s(θ; z)f(z; θ) dz = 0

When θ = θ0 ∫
s(θ0; z)f(z; θ0) dz = E [s(θ0; z)]

So
E [s(θ0; z)] = 0
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Aside: Interchanging differentiation and integration

Source: Bartle, R., 1966, The Elements of Integration, Wiley, New York
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Proof of information equality (the continuous case):

From the previous result: ∫
s(θ; z)f(z; θ)dz = 0

Take derivatives in both sides, use the product rule and omit arguments in functions
to simplify notation: ∫

(sf ′ + s′f)dz = 0∫
sf ′dz +

∫
s′fdz = 0

From the score equality, f ′ = sf , replacing f ′ above∫
s(θ; z)s(θ; z)′f(z; θ)dz +

∫
s(θ; z)′f(z; θ)dx = 0

When θ = θ0

E(s(θ0, Z)s(θ0, Z)′) +

∫
H(θ0; z)f(z; θ0)dz = 0

J + E(H(θ0;Z)) = 0

which implies the desired result.
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Asymptotic normality

Under our assumptions, wpa1 the MLE estimator satisfies the
FOC’s

s(θ̂n; Z̃) = 0

Take a first order Taylor expansion around θ0

s(θ̂n; Z̃) = s(θ0; Z̃) +H(θ̄; Z̃)(θ̂n − θ0) = 0

where θ̄ is a ‘mean value’ located between θ̂n and θ0. (Note that

consistency implies θn
p→ θ0).

Now solve

√
n
(
θ̂ − θ0

)
=

(
− H(θ̄; Z̃)

n

)−1(
s(θ0; Z̃)√

n

)
Now we are back in familiar territory: we will show that the first factor does not explode, and that the second is

aymptotically normal

Walter Sosa-Escudero Maximum Likelihood Estimation



Motivation: a non-linear model
Likelihood and Maximum-Likelihood

Asymptotic properties

First we will show: −
(
n−1H(θ̄; Z̃)

)−1 p→ J−1

Preliminary result: if gn(θ) is a sequence of random functions that converge uniformly

in probability to g0(θ) for all θ in a compact set Θ, and g0(θ) is continuous, θ̂n
p→ θ0

implies gn(θ̂n)
p→ g0(θ0) (see Ruud (2000, pp. 326).

According to our assumptions n−1H(θ; Z̃) = n−1
∑n

i=1H(θ;Zi)
converges uniformly in probability to E [H(θ;Z)], which by the
previous results, it is continuous in θ.

Hence, by the previous result, since θ̄
p→ θ0

n−1H(θ̄; Z̃)
p→ E [H(θ0;Z)] = −J <∞

by the information equality. Then the result follows by continuity
of matrix inversion and existence of the information matrix.
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Now we show:
s(θ0; Z̃)√

n

d→ N(0, J)

Start with

s(θ0; Z̃)√
n

=
√
n
s(θ0, Z̃)

n
=
√
n

∑n
i=1 s(θ0, Zi)

n

In order to apply the CLT we check

E [s(θ0, Zi)] = 0, by the score equality.

V [s(θ0, Zi)] = J <∞.

Then, using the Cramer Wold device (please fill details) we get the
desired result.
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Collecting results:

√
n
(
θ̂n − θ0

)
=

(
− H(θ0,X̃)

n

)−1 (
s(θ0,X̃)√

n

)
p→ J−1 d→ N

(
0, J)

)
Then by Slutzky’ theorem and linearity

√
n
(
θ̂n − θ0

)
d→ N

(
0, J−1JJ−1

)
= N

(
0, J−1

)
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Variance estimation

The asymptotic variance of θ̂n is J−1, with J = V (s(θ0, Z). We
will propose three consistent estimators:

1 Inverse of empirical minus hessian:[
− 1
n

n∑
i=1

H(θ̂n;Zi)

]−1

2 Inverse of empirical variance of score (OPG):[
1
n

n∑
i=1

s(θ̂n;Zi)s(θ̂n;Zi)′
]−1

3 Inverse of empirical information matrix:[
J(θ̂n)−1

]
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Invariance

Invariance: Let λ = g(θ), where g(θ) is a one-to-one function. Let
θ0 denote the true parameter, so λ0 = g(θ0) is the true parameter
under the new reparametrizaton. Then, if θ̂ its MLE of θ0,
λ̂ = g(θ̂) is the MLE of λ0

Example: if θ̃ is the MLE of ln(θ0), how can we get the MLE of θ0?
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Proof:

Since θ̂ is the MLE
l(θ̂, z̃) ≥ l(θ, z̃),

for every θ ∈ Θ. Since λ = g(θ) is one-to-one:

l(g−1(λ̂), z̃) ≥ l(g−1(λ), z̃)

then λ̂ = g(θ̂) maximizes the reparametrized log-likelihood.
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MLE and unbiasedness

The invariance property makes the MLE estimator very likely to be
biased in many relevant cases.

Consider the following intuition. Suppose θ̃ is the MLE for θ0 and
suppose it is unbiased, so

E(θ̃) = θ0

By invariance, g(θ̃) is the MLE of g(θ0). Is g(θ̃) unbiased? In

general
E(g(θ̂)) 6= g(E(θ̂)) = g(θ0

so if the MLE is unbiased for one parametrization, it is very likely
to be biased for most other parametrizations.
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Asymptotic properties

MLE and Efficiency

Let θ∗ be any unbiased estimator of θ0. An important result is the
following

Cramer-Rao Inequality: V (θ∗)− (nJ)−1 is psd.

This provides a lower bound for unbiased estimators.
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Asymptotic properties

Proof: the single parameter case (K = 1).

For any two random variables X and Y

Cov(X,Y )2 ≤ V (X)V (Y )

since the squared correlation is less than 1. Then

V (X) ≥ Cov(X,Y )2

V (Y )

We will take X = θ∗ and Y = s(θ0, Z̃). It is immediate to check

V (s(θ0, Z̃)) = V

(
n∑
i=1

s(θ0, Z̃i)

)
= n J

So...what do we need to show to finish the proof?
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Asymptotic properties

We have

V (θ∗) ≥
Cov

(
θ∗, s(θ0, Z̃)

)2

nJ

so we need to show Cov
(
θ∗, s(θ0, Z̃)

)
= 1.

(Sketch:) Since E(s(θ0, Z̃)) = 0, Cov
(
θ∗, s(θ0, Z̃)

)
= E

(
θ∗s(θ0, Z̃)

)
E(θ∗s) =

∫
θ∗s f(z̃) dz̃

=

∫
θ∗
ḟ(z̃)

f(z̃)
f(z̃) dz̃

=

∫
θ∗ḟ(z̃) dz̃

=
∂

∂θ

∫
θ∗f(z̃, θ) dz̃

∣∣∣∣
θ=θ0

=
∂

∂θ
E(θ∗)|θ=θ0

= 1

since E(θ∗) = θ0.
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Asymptotic properties

MLE and efficiency

The CR bound applies to unbiased estimators. MLE is likely to be
biased.

MLE estimators are asymptotically normal, centered around the true
parameter with normalized variance equal to the CR lower bound for
unbiased estimators.

Problem: the class of consistent AN estimators includes some
extreme (an highly unusual) cases that can improve upon the CR
bound (the so called ‘superefficient’ estimator).

Rao (1963): the MLE estimator is efficient (minimum variance) in
the class of consistent and uniformly asymptotically normal (CUAN)
estimators.

CUAN estimators: θ̃ is CUAN for θ0 if it is consistent and√
(θ̃ − θ0) converges in distribution to a normal rv uniformly over

compact subsets of Θ.
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