OLS Anatomy. Biases and imprecisions. GLS.

Walter Sosa-Escudero

January 26, 2015

Walter Sosa-Escudero OLS Anatomy. Biases and imprecisions. GLS.



o 3= (X'X)"'X'Y

@ Good: unbiased, small variance

@ This lecture: what makes OLS a) imprecise, b) biased.

But first we need a key result...
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The FWL Theorem

The Frisch-Waugh-Lovell Theorem

Two important matrices: P and M

V' = Xf+u
@ (X' X)"'X'Y
YV =X3=XX'X)'X'Y = PY
e=Y-Y=Y—-PY=(I-P)YY=MY
o P=X(X'X)"1X"
o M=1-X(X'X)'X'.
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The FWL Theorem

Properties
@ M and P are symmetric: M = M', P = P’
@ M and P are idempotent. M'M = M, P’P = P
o M+P=1I, MP=0.
o PX =X, MX =0,
e e=MY =M(XB+u)=Mu

M ‘makes’ residuals out of projecting Y on X.

Prove all these results. Easy
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The FWL Theorem

The Frisch-Waugh-Lovell Theorem

Consider the linear model: Y = X3+ u
And partition it as follows: Y = X181 + X8 + u

X1, X5 matrices of k1 and ky explanatory variables. Then,
X = [Xl XQ], ,8/ = (,Bi Bé)/ and k = kl + kg.

My =1 — Xo(X45X2)71 X, ‘makes’ residuals of regressing on Xo.

Y* = MyY, XT = My X, respectively, OLS residuals of regressing
Y on X5, and all columns of X7 on X5.
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The FWL Theorem

Suppose that we are interested in estimating 52, and consider the
following alternative methods:

® Method 1. Proceed as usual and regress Y on X obtaining
the OLS estimator = (3] (%) = (X’X)~'X'Y. B; would
be the desired estimate.

® Method 2: Regress Y* on X7 and obtain as estimate
b= (X7XP) Xy Y

Let e; and e be the residuals vectors of the regressions in Method
1 and 2, respectively.

Theorem (Frisch and Waugh, 1933, Lovell, 1963): 3, = 3 (first
part) and ey = ey (second part).

Proof: Davidson and MacKinnon (2002)
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The FWL Theorem

Intuition

o Extremely powerful idea.

@ There are two ways to estimate 31. One is direct, regressing
Y in X7 and X5. The other, first ‘eliminates’ the effect of Xs.

Gives content to the idea of ‘controlling for Xs'.

Every k-variable regression boils down to a two variable
regression!

@ Has innumerable applications. See Davidson and MacKinnon
(1993).
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Sources of imprecisions

Sources of imprecisions

Result:

~ 0'2

YO vy

where R? is the R? of regressing X on all other explanatory
variables, and V(X;) =n~1 > (X; — X;)?
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Sources of imprecisions

Proof: By the FWL theorem,
. YR X

B
J Zz— X*2
and ) )
~ g g
b X2 i1 X357
szl 7% S%” i

where X7 = M_;X; and M_; is a matrix that gets residuals of
regression X; on all other explanatory variables in the model.
The result follows by noting

*2 *2
R2 —1_ Zz— X _ Zz— X" _
! S]J Zz—l(X - X )
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Sources of imprecisions

A~ 0'2
Vi) =4 (1 - R)V(X,)’

This is a crucial result. There are four factors that contribute to
the variance of the OLS estimate:

@ o°: ignorance.
Q@ V(X;): variability of X;
(3] ]?? multicollinearity.

Q@ n: ‘'micronumerosity’.

You should tattoo this in your arm. Leave space for one more.
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Sources of biases

Sources of biases

Back to the FWLT scenario

Y = X161+ Xo82 +u
@ Suppose we are interested in estimating 3. We should regress

Y on X; and X; (or use the FWLT trick).

@ Suppose that, instead, we regress Y on just X7 and get

Bf = (X1 X1) 7' X(Y

Walter Sosa-Escudero OLS Anatomy. Biases and imprecisions. GLS.



Sources of biases

Result (Omitted variables bias):

E(Bi1X1) = A1 + (X1X1) 7' X] E(Xa|X1) Bo

bias

An extremely powerful result.
If B2 # 0, OLS omission of X5 is not necessarily biased.
It is biased if E'(X3|X7) # 0.

Can omit: irrelevant variables (52 = 0) or relevant variables
but unrelated to the variables of interest.

This is the other one you should have it tattoed in your arm.
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Sources of biases

Proof:

B = (X{X)T'X(Y
(X1 X)X (X181 + Xof2 +u)
EBf1X1) = B+ (X]X1)'X] B(X2]X1) B

Key idea: whatever is left out of the model is left in the error term.
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Sources of biases

Small and large models

Suppose we want to estimate 3;
Y = X161 + Xof2 +u

What should we do with X357

@ B9 = 0. Omit. Why? Gauss Markov!

° [ #0

o F(X3|X1)=0. Can omit X5.
o F(X3|X1) # 0. Include X5 to avoid bias.

So, in doubt, should be include X5 or not? What do you think?

Walter Sosa-Escudero OLS Anatomy. Biases and imprecisions. GLS.



Sources of biases

Omitted Variable Bias: an example

Computer generated data, but based on Appleton, French and
Vanderpump (" Ignoring a Covariate: an Example of Simpon's
Paradox”, The American Statistician, 50, 4, 1996)

@ Y = risk of death.
o SMOKE = consumption of cigarrettes.
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Sources of biases

. reg y smoke

Source | Ss af MS Number of obs = 100
F( 1, 98) = 194.34

Model | 7613.25147 1 7613.25147 Prob > F = 0.0000
Residual | 3839.18734 98 39.1753811 R-squared = 0.6648
Adj R-squared = 0.6614

Total | 11452.4388 929 115.6812 Root MSE = 6.259

y Coef. Std. Err. t P>t [95% Conf. Intervall

smoke | -1.819348 .1305081 -13.94 0.000 -2.078337 -1.560359
_cons | 168.5975  4.774249 33.22 0.000 149.1231 168.0718
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Sources of biases

. reg y smoke age

Source | Ss df MS Number of obs = 100
F( 2, 97) = 5424.58

Model | 11350.9524 2 b5675.47622 Prob > F = 0.0000
Residual | 101.486373 97 1.04625126 R-squared = 0.9911
Adj R-squared = 0.9910

Total | 11452.4388 99 115.6812 Root MSE = 1.0229

y | Coef. Std. Err. t P>t [95% Conf. Intervall

smoke | .9431267 .050902 18.563  0.000 .8421004 1.044153
age | .9804631 .0164039 59.77  0.000 .9479059 1.01302
_cons | 12.84084  2.560392 5.02 0.000 7.759169 17.92251

. cor y smoke age

(obs=100)
| y smoke age
y 1 1.0000
smoke | -0.8153 1.0000
age | 0.9797 -0.9080 1.0000
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Generalized Least Squares

Generalized Least Squares

The Classical Linear Model:

@ Linearity: Y = X3 + u.

@ Strict exogeneity: E(u|X) =0

© No Multicollinearity: p(X) = K, w.p.1.

@ No heteroskedasticity/ serial correlation: V(u|X) = o21I,.

Gauss/Markov: 3= (X'X)~1X'Y is best linear unbiased.
Variance: S2(X’X)~! is unbiased for V(5| X) = 02(X'X)"!

Valid Inference: with the normality assumption, we use ¢t and F'
tests.

Now we will focus on the consequences of relaxing V (u|X) = o21,,.
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Generalized Least Squares

The Generalized Linear Model

Suppose all classical assumptions hold, but now

o V(u|X) = o%Q where Q is any symmetric, positive definite
n X m matrix

Allows for heteroskedasticity (diagonal terms of Q not all equal)
and/or serial correlation (off-diagonal elements may now be # 0.).
Plan

@ Explore consequences relaxing V (u|X) = 021,.

@ Find optimal estimators and valid inference strategies.
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Generalized Least Squares

Consequences of relaxing V (u|X) = o?1,

o f3 still linear and unbiased (why?) but the Gauss Markov
Theorem does not hold anymore. We will show constructively
that 3 is now inneficient by finding the BLUE for the
generalized linear model.

o V(3]X) will now be 02(X’X)1Q(X'X)~! (check it).

o V(B|X) is no longer o2(X'X)™!, and S2(X’X)~! will be a

A

biased estimator for V().
@ t tests no longer have the t distribution, F' tests no longer
valid too.
So, ignoring heteroskedasticity or serial correlation, that is, the use
of B and V(B|X) = S?(X'X)~!, keeps estimation of 3 unbiased
though inefficient, and invalidates all standard inference.
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Generalized Least Squares

Generalized Least Squares

A simple result: if 2 is n X n symmetric and pd, there isan n x n
nonsingular matrix C' such that

Ql=cc
What does this mean, intuitively?

Consider now the following tranformed model

where Y* =CY, X* =CX and u* = Cu.
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Generalized Least Squares

Now check:
Q Y* = X*"B+ u* so the transformed model is trivially linear.
Q@ E(u'X)=CEu|X)=0
Q p(X*) =p(CX) = K, w.p.1. (Cx isa rank preserving tranformation of X1).
Q V(uX)=

V(CulX) = E(CuuC’|X) = CE(ud|X)C’
Co*QC’

— JZC[Q_I]_IC,
- 2clccc) e
= szn

So...
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Generalized Least Squares

All classical assumption hold for the transformed model, hence the
BLUE is:

Bgls _ (X*/X*)—IX*/Y*
This the generalized least squares estimator.

@ GLS is the OLS estimator of the transformed model.

@ Provides the BLUE under heteroskedasticity / serial
correlation.

@ Now it is clear that B is inefficient in the generalized context
(why?)

@ Important: statistical properties depend on the underlying
structure (they are not properties of an estimator per-se).

Walter Sosa-Escudero OLS Anatomy. Biases and imprecisions. GLS.



Generalized Least Squares

Note that

Bgls _ (X**X*)—IX**Y*
= (X'c'cx)'x'c'cy
= X'olx)x'oly

o When Q = 1,,, B, = 6.

@ The practical implementation of Bgls requires that we know (2
(though not 02.)

o It is easy to check that V(f,,) = o2(X* X*) 1.
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Generalized Least Squares

Feasible GLS

SupApose there is an estimate for ©, label it €2. Then, replacing 2
by Q: X
Bras = (X'QIX)X'Q7Y

This is the feasible GLS estimator.

Is it linear and unbiased? Efficient?
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