OLS Anatomy. Biases and imprecisions. GLS.

Walter Sosa-Escudero

January 26, 2015

Walter Sosa-Escudero OLS Anatomy. Biases and imprecisions. GLS.

- $\hat{\beta} = (X'X)^{-1}X'Y$
- Good: unbiased, small variance
- This lecture: what makes OLS a) imprecise, b) biased.

But first we need a key result...

The Frisch-Waugh-Lovell Theorem

Two important matrices: P and M

$$\begin{split} Y &= X\beta + u \\ \hat{\beta} &= (X'X)^{-1}X'Y \\ \hat{Y} &= X\hat{\beta} = X(X'X)^{-1}X'Y = PY \\ e &= Y - \hat{Y} = Y - PY = (I - P)Y = MY \\ \bullet \ P &\equiv X(X'X)^{-1}X'. \\ \bullet \ M &\equiv I - X(X'X)^{-1}X'. \end{split}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Properties

- M and P are symmetric: M = M', P = P'
- M and P are *idempotent*: M'M = M, P'P = P

•
$$M + P = I$$
, $MP = 0$.

•
$$PX = X$$
, $MX = 0$.

•
$$e = MY = M(X\beta + u) = Mu$$

M 'makes' residuals out of projecting Y on X.

Prove all these results. Easy

30.00

A 1

The Frisch-Waugh-Lovell Theorem

Consider the linear model: $Y = X\beta + u$

And partition it as follows: $Y = X_1\beta_1 + X_2\beta_2 + u$

 X_1 , X_2 matrices of k_1 and k_2 explanatory variables. Then, $X = [X_1 \ X_2], \ \beta' = (\beta'_1 \ \beta'_2)'$ and $k = k_1 + k_2$.

 $M_2 \equiv I - X_2 (X'_2 X_2)^{-1} X'_2$, 'makes' residuals of regressing on X_2 .

 $Y^* \equiv M_2 Y$, $X_1^* \equiv M_2 X_1$, respectively, OLS residuals of regressing Y on X_2 , and all columns of X_1 on X_2 .

▲□▼ ▲ □▼ ▲ □▼

3

Suppose that we are interested in estimating β_2 , and consider the following alternative methods:

- Method 1: Proceed as usual and regress Y on X obtaining the OLS estimator $\hat{\beta} = (\hat{\beta}'_1 \ \hat{\beta}'_2)' = (X'X)^{-1}X'Y$. $\hat{\beta}_1$ would be the desired estimate.
- Method 2: Regress Y^* on X_1^* and obtain as estimate $\tilde{\beta}_1=(X_1^{*\prime}X_1^*)^{-1}X_1^{*\prime}\;Y^*$

Let e_1 and e_2 be the residuals vectors of the regressions in Method 1 and 2, respectively.

Theorem (Frisch and Waugh, 1933, Lovell, 1963): $\hat{\beta}_1 = \tilde{\beta}_1$ (first part) and $e_1 = e_2$ (second part).

Proof: Davidson and MacKinnon (2002)

イロト イポト イラト イラト

Intuition

- Extremely powerful idea.
- There are two ways to estimate β₁. One is direct, regressing Y in X₁ and X₂. The other, first 'eliminates' the effect of X₂.
- Gives content to the idea of 'controlling for X_2 '.
- Every k-variable regression boils down to a two variable regression!
- Has innumerable applications. See Davidson and MacKinnon (1993).

- 同 ト - ヨ ト - - ヨ ト

Sources of imprecisions

Result:

$$V(\hat{\beta}_j) = \frac{\sigma^2}{n \ (1 - R_j^2) V(X_j)},$$

where R_j^2 is the R^2 of regressing X_j on all other explanatory variables, and $V(X_j) = n^{-1} \sum_{i=1}^n (X_{ji} - \bar{X_j})^2$

Proof: By the FWL theorem,

$$\hat{\beta}_j = \frac{\sum_{i=1}^n X_{ji}^* Y_i}{\sum_{i=1}^n X_{ji}^{*2}}$$

and

$$V(\hat{\beta}_j) = \frac{\sigma^2}{\sum_{i=1}^n X_{ji}^{*2}} = \frac{\sigma^2}{\frac{\sum_{i=1}^n X_{ji}^{*2}}{S_{jj}}} S_{jj}$$

where $X_j^* \equiv M_{-j}X_j$ and M_{-j} is a matrix that gets residuals of regression X_j on all other explanatory variables in the model. The result follows by noting

$$R_j^2 = 1 - \frac{\sum_{i=1}^n X_{ji}^{*2}}{S_{jj}} = 1 - \frac{\sum_{i=1}^n X_{ji}^{*2}}{\sum_{i=1}^n (X_{ji} - \bar{X}_j)^2} \square$$

$$V(\hat{\beta}_j) = \frac{\sigma^2}{n \ (1 - R_j^2)V(X_j)},$$

This is a crucial result. There are four factors that contribute to the variance of the OLS estimate:

•
$$\sigma^2$$
: ignorance

2
$$V(X_j)$$
: variability of X_j

- (a) R_i^2 : multicollinearity.
- In: 'micronumerosity'.

You should tattoo this in your arm. Leave space for one more.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Sources of biases

Back to the FWLT scenario

$$Y = X_1\beta_1 + X_2\beta_2 + u$$

- Suppose we are interested in estimating β_1 . We should regress Y on X_1 and X_2 (or use the FWLT trick).
- Suppose that, instead, we regress Y on just X_1 and get

$$\hat{\beta}_1^* = (X_1'X_1)^{-1}X_1'Y$$

Result (Omitted variables bias):

$$E(\hat{\beta}_1^*|X_1) = \beta_1 + \underbrace{(X_1'X_1)^{-1}X_1' E(X_2|X_1) \beta_2}_{\text{bias}}$$

- An extremely powerful result.
- If $\beta_2 \neq 0$, OLS omission of X_2 is not necessarily biased.
- It is biased if $E(X_2|X_1) \neq 0$.
- Can omit: irrelevant variables (β₂ = 0) or relevant variables but unrelated to the variables of interest.

This is the other one you should have it tattoed in your arm.

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof:

$$\hat{\beta}_1^* = (X_1'X_1)^{-1}X_1'Y$$

= $(X_1'X_1)^{-1}X_1'(X_1\beta_1 + X_2\beta_2 + u)$
 $E(\hat{\beta}_1^*|X_1) = \beta_1 + (X_1'X_1)^{-1}X_1' E(X_2|X_1) \beta_2$

Key idea: whatever is left out of the model is left in the error term.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Small and large models

Suppose we want to estimate β_1

$$Y = X_1\beta_1 + X_2\beta_2 + u$$

What should we do with X_2 ?

So, in doubt, should be include X_2 or not? What do you think?

- 4 同 6 4 日 6 4 日 6

Omitted Variable Bias: an example

Computer generated data, but based on Appleton, French and Vanderpump ("Ignoring a Covariate: an Example of Simpon's Paradox", The American Statistician, 50, 4, 1996)

- Y = risk of death.
- *SMOKE* = consumption of cigarrettes.

3 N 4 3 N

. reg y smoke

Source	1	SS	df		MS		Number of obs	=	100
	+						F(1, 98)	=	194.34
Model	1	7613.25147	1	7613	.25147		Prob > F	=	0.0000
Residual	1	3839.18734	98	39.1	753811		R-squared	=	0.6648
	+						Adj R-squared	=	0.6614
Total	1	11452.4388	99	11	5.6812		Root MSE	=	6.259
У		Coei.	Std.	Err.	t	P> t	[95% Conf.	In	tervalj
,	.+	4 040040	4005		40.04		0 070007		
smoke	1	-1.819348	.1305	081	-13.94	0.000	-2.078337	-1	.560359
_cons	1	158.5975	4.774	1249	33.22	0.000	149.1231	1	58.0718

*ロト *部ト *注ト *注ト

æ

. reg y smoke age

SS	df	MS		Number of obs	= 100
11350.9524 101.486373	2 567 97 1.0	5.47622 4625126		F(2, 97) Prob > F R-squared	= 5424.58 = 0.0000 = 0.9911
11452.4388	99 1	15.6812		Root MSE	= 0.9910 = 1.0229
Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
.9431267 .9804631 12.84084	.050902 .0164039 2.560392	18.53 59.77 5.02	0.000 0.000 0.000	.8421004 .9479059 7.759169	1.044153 1.01302 17.92251
	SS 11350.9524 101.486373 11452.4388 Coef. .9431267 .9804631 12.84084	SS df 11350.9524 2 567 101.486373 97 1.0 11452.4388 99 1 Coef. Std. Err. .9431267 .050902 .9804631 .0164039 12.84084 2.560392	SS df MS 11350.9524 2 5675.47622 101.486373 97 1.04625126 11452.4388 99 115.6812 Coef. Std. Err. t .9431267 .050902 18.53 .9804631 .0164039 59.77 12.84084 2.560392 5.02	SS df MS 11350.9524 2 5675.47622 101.486373 97 1.04625126 11452.4388 99 115.6812 Coef. Std. Err. t P> t .9431267 .050902 18.53 0.000 .9804631 .0164039 59.77 0.000 12.84084 2.560392 5.02 0.000	SS df MS Number of obs 11350.9524 2 5675.47622 Prob > F 101.486373 97 1.04625126 R-squared

. cor y smoke age (obs=100)

y | 1.0000 smoke | -0.8153 1.0000 age | 0.9797 -0.9080 1.0000

メロト メポト メヨト メヨト 三日

Generalized Least Squares

The Classical Linear Model:

• Linearity:
$$Y = X\beta + u$$
.

- **2** Strict exogeneity: E(u|X) = 0
- **③** No Multicollinearity: $\rho(X) = K$, w.p.1.
- No heteroskedasticity/ serial correlation: $V(u|X) = \sigma^2 I_n$.

Gauss/Markov: $\hat{\beta} = (X'X)^{-1}X'Y$ is best linear unbiased. Variance: $S^2(X'X)^{-1}$ is unbiased for $V(\hat{\beta}|X) = \sigma^2(X'X)^{-1}$ Valid Inference: with the normality assumption, we use t and F tests.

Now we will focus on the consequences of relaxing $V(u|X) = \sigma^2 I_n$.

The Generalized Linear Model

Suppose all classical assumptions hold, but now

• $V(u|X)=\sigma^2 \Omega$ where Ω is any symmetric, positive definite $n\times n$ matrix

Allows for heteroskedasticity (diagonal terms of Ω not all equal) and/or serial correlation (off-diagonal elements may now be $\neq 0$.).

Plan

- Explore consequences relaxing $V(u|X) = \sigma^2 I_n$.
- Ind optimal estimators and valid inference strategies.

< 回 > < 回 > < 回 >

Consequences of relaxing $V(u|X) = \sigma^2 I_n$

- $\hat{\beta}$ still linear and unbiased (why?) but the Gauss Markov Theorem does not hold anymore. We will show constructively that $\hat{\beta}$ is now inneficient by finding the BLUE for the generalized linear model.
- $V(\hat{\beta}|X)$ will now be $\sigma^2(X'X)^{-1}\Omega(X'X)^{-1}$ (check it).
- $V(\hat{\beta}|X)$ is no longer $\sigma^2(X'X)^{-1}$, and $S^2(X'X)^{-1}$ will be a biased estimator for $V(\hat{\beta})$.
- t tests no longer have the t distribution, F tests no longer valid too.

So, ignoring heteroskedasticity or serial correlation, that is, the use of $\hat{\beta}$ and $\hat{V}(\hat{\beta}|X) = S^2(X'X)^{-1}$, keeps estimation of β unbiased though inefficient, and invalidates all standard inference.

伺 ト く ヨ ト く ヨ ト

Generalized Least Squares

A simple result: if Ω is $n\times n$ symmetric and pd, there is an $n\times n$ nonsingular matrix C such that

$$\Omega^{-1} = C'C$$

What does this mean, intuitively?

Consider now the following tranformed model

$$Y^* = X^*\beta + u^*$$

where $Y^* = CY$, $X^* = CX$ and $u^* = Cu$.

ヨト イヨト

Now check:

2
$$E(u^*|X) = CE(u|X) = 0$$

3 $ho(X^*)=
ho(CX)=K$, W.p.1. (CX is a rank preserving tranformation of X!).

 $\ \, \bullet \ \, V(u^*|X) =$

$$V(Cu|X) = E(CuuC'|X) = CE(uu'|X)C'$$

= $C\sigma^2\Omega C'$
= $\sigma^2 C[\Omega^{-1}]^{-1}C'$
= $\sigma^2 C[(C'C)^{-1}]^{-1}C$
= $\sigma^2 I_n$

So...

3

All classical assumption hold *for the transformed model*, hence the BLUE is:

$$\hat{\beta}_{gls} = (X^{*\prime}X^*)^{-1}X^{*\prime}Y^*$$

This the generalized least squares estimator.

- GLS is the OLS estimator of the transformed model.
- Provides the BLUE under heteroskedasticity / serial correlation.
- Now it is clear that $\hat{\beta}$ is inefficient in the generalized context (why?)
- Important: statistical properties depend on the underlying structure (they are not properties of an estimator per-se).

Note that

$$\hat{\beta}_{gls} = (X^{**}X^{*})^{-1}X^{**}Y^{*} = (X'C'CX)^{-1}X'C'CY = (X'\Omega^{-1}X)X'\Omega^{-1}Y$$

• When
$$\Omega = I_n$$
, $\hat{\beta}_{gls} = \hat{\beta}$.

- The practical implementation of $\hat{\beta}_{gls}$ requires that we know Ω (though not $\sigma^2.)$
- It is easy to check that $V(\hat{\beta}_{gls})=\sigma^2(X^{*\prime}X^*)^{-1}.$

∃ → < ∃ →</p>

Feasible GLS

Suppose there is an estimate for Ω , label it $\hat{\Omega}$. Then, replacing Ω by $\hat{\Omega}$:

$$\hat{\beta}_{fgls} = (X'\hat{\Omega}^{-1}X)X'\hat{\Omega}^{-1}Y$$

This is the feasible GLS estimator.

Is it linear and unbiased? Efficient?