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β̂ = (X ′X)−1X ′Y

Good: unbiased, small variance

This lecture: what makes OLS a) imprecise, b) biased.

But first we need a key result...
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The Frisch-Waugh-Lovell Theorem

Two important matrices: P and M

Y = Xβ + u
β̂ = (X ′X)−1X ′Y
Ŷ = Xβ̂ = X(X ′X)−1X ′Y = PY
e = Y − Ŷ = Y − PY = (I − P )Y = MY

P ≡ X(X ′X)−1X ′.

M ≡ I −X(X ′X)−1X ′.

Walter Sosa-Escudero OLS Anatomy. Biases and imprecisions. GLS.



The FWL Theorem
Sources of imprecisions

Sources of biases
Generalized Least Squares

Properties

M and P are symmetric: M = M ′, P = P ′

M and P are idempotent: M ′M = M , P ′P = P

M + P = I, MP = 0.

PX = X, MX = 0.

e = MY = M(Xβ + u) = Mu

M ‘makes’ residuals out of projecting Y on X.

Prove all these results. Easy
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The Frisch-Waugh-Lovell Theorem

Consider the linear model: Y = Xβ + u

And partition it as follows: Y = X1β1 +X2β2 + u

X1, X2 matrices of k1 and k2 explanatory variables. Then,
X = [X1 X2], β

′ = (β′1 β′2)
′ and k = k1 + k2.

M2 ≡ I −X2(X
′
2X2)

−1X ′2, ‘makes’ residuals of regressing on X2.

Y ∗ ≡M2Y , X∗1 ≡M2X1, respectively, OLS residuals of regressing
Y on X2, and all columns of X1 on X2.
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Suppose that we are interested in estimating β2, and consider the
following alternative methods:

Method 1: Proceed as usual and regress Y on X obtaining
the OLS estimator β̂ = (β̂′1 β̂′2)

′ = (X ′X)−1X ′Y . β̂1 would
be the desired estimate.

Method 2: Regress Y ∗ on X∗1 and obtain as estimate
β̃1 = (X∗′1 X

∗
1 )−1X∗′1 Y ∗

Let e1 and e2 be the residuals vectors of the regressions in Method
1 and 2, respectively.

Theorem (Frisch and Waugh, 1933, Lovell, 1963): β̂1 = β̃1 (first
part) and e1 = e2 (second part).

Proof: Davidson and MacKinnon (2002)
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Intuition

Extremely powerful idea.

There are two ways to estimate β1. One is direct, regressing
Y in X1 and X2. The other, first ‘eliminates’ the effect of X2.

Gives content to the idea of ‘controlling for X2’.

Every k-variable regression boils down to a two variable
regression!

Has innumerable applications. See Davidson and MacKinnon
(1993).
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Sources of imprecisions

Result:

V (β̂j) =
σ2

n (1−R2
j )V (Xj)

,

where R2
j is the R2 of regressing Xj on all other explanatory

variables, and V (Xj) = n−1
∑n

i=1(Xji − X̄j)
2
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Proof: By the FWL theorem,

β̂j =

∑n
i=1X

∗
jiYi∑n

i=1X
∗2
ji

and

V (β̂j) =
σ2∑n

i=1X
∗2
ji

=
σ2∑n

i=1 X
∗2
ji

Sjj
Sjj

where X∗j ≡M−jXj and M−j is a matrix that gets residuals of
regression Xj on all other explanatory variables in the model.
The result follows by noting

R2
j = 1−

∑n
i=1X

∗2
ji

Sjj
= 1−

∑n
i=1X

∗2
ji∑n

i=1(Xji − X̄j)2
�
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V (β̂j) =
σ2

n (1−R2
j )V (Xj)

,

This is a crucial result. There are four factors that contribute to
the variance of the OLS estimate:

1 σ2: ignorance.

2 V (Xj): variability of Xj

3 R2
j : multicollinearity.

4 n: ‘micronumerosity’.

You should tattoo this in your arm. Leave space for one more.
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Sources of biases

Back to the FWLT scenario

Y = X1β1 +X2β2 + u

Suppose we are interested in estimating β1. We should regress
Y on X1 and X2 (or use the FWLT trick).

Suppose that, instead, we regress Y on just X1 and get

β̂∗1 = (X ′1X1)
−1X ′1Y
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Result (Omitted variables bias):

E(β̂∗1 |X1) = β1 + (X ′1X1)
−1X ′1 E(X2|X1) β2︸ ︷︷ ︸

bias

An extremely powerful result.

If β2 6= 0, OLS omission of X2 is not necessarily biased.

It is biased if E(X2|X1) 6= 0.

Can omit: irrelevant variables (β2 = 0) or relevant variables
but unrelated to the variables of interest.

This is the other one you should have it tattoed in your arm.
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Proof:

β̂∗1 = (X ′1X1)
−1X ′1Y

= (X ′1X1)
−1X ′1(X1β1 +X2β2 + u)

E(β̂∗1 |X1) = β1 + (X ′1X1)
−1X ′1 E(X2|X1) β2

Key idea: whatever is left out of the model is left in the error term.
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Small and large models

Suppose we want to estimate β1

Y = X1β1 +X2β2 + u

What should we do with X2?

β2 = 0. Omit. Why? Gauss Markov!

β2 6= 0

E(X2|X1) = 0. Can omit X2.
E(X2|X1) 6= 0. Include X2 to avoid bias.

So, in doubt, should be include X2 or not? What do you think?
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Omitted Variable Bias: an example

Computer generated data, but based on Appleton, French and
Vanderpump (”Ignoring a Covariate: an Example of Simpon’s
Paradox”, The American Statistician, 50, 4, 1996)

Y = risk of death.

SMOKE = consumption of cigarrettes.
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. reg y smoke

Source | SS df MS Number of obs = 100

-------------+------------------------------ F( 1, 98) = 194.34

Model | 7613.25147 1 7613.25147 Prob > F = 0.0000

Residual | 3839.18734 98 39.1753811 R-squared = 0.6648

-------------+------------------------------ Adj R-squared = 0.6614

Total | 11452.4388 99 115.6812 Root MSE = 6.259

------------------------------------------------------------------------------

y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

smoke | -1.819348 .1305081 -13.94 0.000 -2.078337 -1.560359

_cons | 158.5975 4.774249 33.22 0.000 149.1231 168.0718

------------------------------------------------------------------------------
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. reg y smoke age

Source | SS df MS Number of obs = 100

-------------+------------------------------ F( 2, 97) = 5424.58

Model | 11350.9524 2 5675.47622 Prob > F = 0.0000

Residual | 101.486373 97 1.04625126 R-squared = 0.9911

-------------+------------------------------ Adj R-squared = 0.9910

Total | 11452.4388 99 115.6812 Root MSE = 1.0229

------------------------------------------------------------------------------

y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

smoke | .9431267 .050902 18.53 0.000 .8421004 1.044153

age | .9804631 .0164039 59.77 0.000 .9479059 1.01302

_cons | 12.84084 2.560392 5.02 0.000 7.759169 17.92251

------------------------------------------------------------------------------

. cor y smoke age

(obs=100)

| y smoke age

-------------+---------------------------

y | 1.0000

smoke | -0.8153 1.0000

age | 0.9797 -0.9080 1.0000
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Generalized Least Squares

The Classical Linear Model:

1 Linearity: Y = Xβ + u.

2 Strict exogeneity: E(u|X) = 0

3 No Multicollinearity: ρ(X) = K, w.p.1.

4 No heteroskedasticity/ serial correlation: V (u|X) = σ2In.

Gauss/Markov: β̂ = (X ′X)−1X ′Y is best linear unbiased.

Variance: S2(X ′X)−1 is unbiased for V (β̂|X) = σ2(X ′X)−1

Valid Inference: with the normality assumption, we use t and F
tests.

Now we will focus on the consequences of relaxing V (u|X) = σ2In.
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The Generalized Linear Model

Suppose all classical assumptions hold, but now

V (u|X) = σ2Ω where Ω is any symmetric, positive definite
n× n matrix

Allows for heteroskedasticity (diagonal terms of Ω not all equal)
and/or serial correlation (off-diagonal elements may now be 6= 0.).

Plan

1 Explore consequences relaxing V (u|X) = σ2In.

2 Find optimal estimators and valid inference strategies.

Walter Sosa-Escudero OLS Anatomy. Biases and imprecisions. GLS.



The FWL Theorem
Sources of imprecisions

Sources of biases
Generalized Least Squares

Consequences of relaxing V (u|X) = σ2In

β̂ still linear and unbiased (why?) but the Gauss Markov
Theorem does not hold anymore. We will show constructively
that β̂ is now inneficient by finding the BLUE for the
generalized linear model.

V (β̂|X) will now be σ2(X ′X)−1Ω(X ′X)−1 (check it).

V (β̂|X) is no longer σ2(X ′X)−1, and S2(X ′X)−1 will be a
biased estimator for V (β̂).

t tests no longer have the t distribution, F tests no longer
valid too.

So, ignoring heteroskedasticity or serial correlation, that is, the use
of β̂ and V̂ (β̂|X) = S2(X ′X)−1, keeps estimation of β unbiased
though inefficient, and invalidates all standard inference.
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Generalized Least Squares

A simple result: if Ω is n× n symmetric and pd, there is an n× n
nonsingular matrix C such that

Ω−1 = C ′C

What does this mean, intuitively?

Consider now the following tranformed model

Y ∗ = X∗β + u∗

where Y ∗ = CY , X∗ = CX and u∗ = Cu.
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Now check:

1 Y ∗ = X∗β + u∗, so the transformed model is trivially linear.

2 E(u∗|X) = CE(u|X) = 0

3 ρ(X∗) = ρ(CX) = K, w.p.1. (CX is a rank preserving tranformation of X!).

4 V (u∗|X) =

V (Cu|X) = E(CuuC ′|X) = CE(uu′|X)C ′

= Cσ2ΩC ′

= σ2C[Ω−1]−1C ′

= σ2C
[
(C ′C)−1

]−1
C

= σ2In

So...
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All classical assumption hold for the transformed model, hence the
BLUE is:

β̂gls = (X∗′X∗)−1X∗′Y ∗

This the generalized least squares estimator.

GLS is the OLS estimator of the transformed model.

Provides the BLUE under heteroskedasticity / serial
correlation.

Now it is clear that β̂ is inefficient in the generalized context
(why?)

Important: statistical properties depend on the underlying
structure (they are not properties of an estimator per-se).
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Note that

β̂gls = (X∗∗X∗)−1X∗∗Y ∗

= (X ′C ′CX)−1X ′C ′CY

= (X ′Ω−1X)X ′Ω−1Y

When Ω = In, β̂gls = β̂.

The practical implementation of β̂gls requires that we know Ω
(though not σ2.)

It is easy to check that V (β̂gls) = σ2(X∗′X∗)−1.
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Feasible GLS

Suppose there is an estimate for Ω, label it Ω̂. Then, replacing Ω
by Ω̂:

β̂fgls = (X ′Ω̂−1X)X ′Ω̂−1Y

This is the feasible GLS estimator.

Is it linear and unbiased? Efficient?
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