A simple proof of the FWL Theorem

Here is a simple proof of the FWL Theorem (established in class). Before proceeding be sure that you understand the basic properties of M and X. Start with:

$$Y = (P + M)Y = PY + MY = X_1\hat{\beta}_1 + X_2\hat{\beta}_2 + MY.$$

Multiply both sides by X'_1M_2 to get:

$$X_1'M_2Y = X_1'M_2X_1\hat{\beta}_1 + X_1'M_2X_2\hat{\beta}_2 + X_1'M_2MY$$

Now

- $M_2X_2 = 0$ by property of the M_2 matrix, so the second term of the right hand side vanishes.
- $X_1'M_2MY = X_1^{*'}e$, with $X_1^{*'} \equiv X_1'M_2$ and $e \equiv MY$. Now e are errors of the full regression of Y on X_1 and X_2 . Note

$$X'e = X'Mu = 0$$

since X'M=0. This implies that all columns of X are uncorrelated with e. $X_1^{*'}$ are residuals of regressing X_1 on X_2 , that is, they are the part of X_1 not linearly explained by X_2 . Consequently, by construction $X_1^{*'}$ is correlated with X_1 (though not with X_2). Then $X_1^{*'}e=0$ since e is uncorrelated with $X_1^{*'}$. Hence the third term of the right hand side vanishes.

This leaves: $X_1'M_2Y = X_1'M_2X_1\hat{\beta}_1$. So:

$$\hat{\beta}_1 = (X_1' M_1 X_1)^{-1} X_1' M_1 Y = \tilde{\beta}_1$$

.