Sample Selection

Walter Sosa-Escudero

Econ 507. Econometric Analysis. Spring 2012

April 23, 2012

Preliminaries 1) Truncated normal distribution

 $X \sim f(x)$, X|X < a: X truncated in a. Then

$$f(x|X < a) = \frac{f(x)}{Pr(X < a)}$$

If $X \sim N(\mu, \sigma^2)$, and recalling that

$$Pr(X < a) = Pr\left(1/\sigma(X - \mu) < 1/\sigma(a - \mu)\right) = Pr(z < \alpha),$$

$$\alpha \equiv (a - \mu)/\sigma, \quad z \equiv (x - \mu)/\sigma.$$

$$f(x|X < a) = \frac{\frac{1}{\sigma} \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{x - \mu}{\sigma}\right)^2\right]}{\Phi(\alpha)}$$

$$= \frac{(1/\sigma)\phi(z)}{\Phi(\alpha)}$$

Result (no proof): if $X \sim N(\mu, \sigma^2)$, then:

$$E(X|X < a) = \mu - \sigma \frac{\phi(\alpha)}{\Phi(\alpha)}$$

- Truncated to the right: expected value moves to the left (general).
- ullet How much? Depends on lpha and σ^2
- $\lambda(z) \equiv \phi(z)/\Phi(z)$ is known as the inverse Mills ratio

Preliminaries 2) Latent variables and probits

Recall the probit model:

$$Pr(y = 1|x) = \Phi(x'\beta)$$

 β can be consistently estimated by MLE based on a random sample (y_i, x_i) , $i = 1, \ldots, n$.

Consider the regression model

$$y^* = x'\beta^* + u, \qquad u \sim N(0, \sigma^2)$$

 y^* not directly observable (a *latent* variable) but, instead, we observe $y=1[y^*>0].$

Which parameters of the regression models can be estimated consistently with this information?

Note that:

$$P(y = 1|x) = P(y^* > 0|x)$$

$$= P(u > -x'\beta^*|x)$$

$$= P(u < x'\beta^*|x)$$

$$= P(u/\sigma < x'\beta^*/\sigma \mid x)$$

$$= \Phi(x'\beta)$$

This is a *probit* model with $\beta \equiv \beta^*/\sigma$.

Based on (y_i,x_i) , we can estimate β consistenly by MLE, even when we cannot estimate β^* and σ^2 separately.

- σ^2 and β^* are not identified with the sample (y_i,x_i) . For example $\beta^*=10$ and $\sigma^2=2$ are observationally equivalent to the case $\beta^*=5$ y $\sigma^2=1$.
- $\beta \equiv \beta^*/\sigma$ is identified.

Sample selectivity

Consider the regression model

$$y_i^* = x_i'\beta + u_i$$

 s_i is a *selectivity* variable: $s_i = 1$ observed, 0 if not.

- We can think that there is a 'super sample' of size N of y_i^*, x_i, s_i and that we observe the 'sub sample' y_i^*, x_i , only when $s_i = 1$.
- Example: female labor productivity

OLS under selectivity

With a random sample (y_i^*, x_i) , consistency relies on:

$$E(u_i|x_i) = 0$$

which implies $E(y_i|x_i) = x_i'\beta$.

Now we do not have a random sample, but one conditioned on $s_i=1.$ Taking conditional expectations:

$$E(y_i|x_i, s_i = 1) = x_i'\beta + E(u_i|x_i, s_i = 1)$$

OLS based on the selected sample will be inconsistent, unless $E(u_i|x_i,s_i=1)=0.$

- Not every selectivity mechanism makes OLS inconsistent.
- If u is independent of x, OLS still consistent (why?).
- If s = g(x), OLS still consistent.
- Examples: wages and education. Males with odd SSN. Males with formal education?

An estimable model under selectivity

Consider the following equations:

$$\left\{ \begin{array}{lll} y_{1i} &=& x'_{1i} \ \beta_1 + u_{1i} & & \text{(regression)} \\ y_{2i^*} &=& x'_{2i} \ \beta_2 + u_{2i} & & \text{(selectivity)} \end{array} \right.$$

Let
$$y_{2i} = 1[y_{2i}^* > 0]$$
.

Example: $y_{1i} =$ wage, regression equantion determines wages based on person's characteristics (x_{1i}) . $y_{2i} =$ net utility of work, x_{2i} are observed determinantes of utility.

Assumptions:

- (y_{2i}, x_{2i}) observed for everyone.
- (y_{1i}, x_{1i}) observed only if $y_{2i} = 1$ (selected sample).
- (u_{1i}, u_{2i}) are independent of x_{2i} and have zero mean.
- $u_{2i} \sim N(0, \sigma_2^2)$.
- **5** $E(u_{1i}|u_{2i}) = \gamma u_2$. No-observables can be related.

Selectivity bias

Here $s_i \equiv y_{2i}$.

$$E(y_{1i}|x_{1i}, y_{2i} = 1) = x'_{1i}\beta_1 + E(u_{1i} | x_{1i}, y_{2i} = 1)$$

$$= x'_{1i}\beta_1 + E[E(u_{1i}|u_{2i}) | x_{1i}, y_{2i} = 1]$$

$$= x'_{1i}\beta_1 + E[\gamma u_{2i} | x_{1i}, y_{2i} = 1]$$

$$= x'_{1i}\beta_1 + \gamma E[u_{2i} | x_{1i}, y_{2i}^* > 0]$$

$$= x'_{1i}\beta_1 + \gamma E[u_{2i} | x_{1i}, u_{2i} < x'_{2i}\beta_2]$$

$$= x'_{1i}\beta_1 - \gamma \sigma_2 \lambda(x'_{2i}\beta_2/\sigma_2)$$

$$= x'_{1i}\beta_1 - \gamma \sigma_2 z_i \neq x'_{1i}\beta_1$$

with $z_i \equiv \lambda(x'_{2i}\beta_2/\sigma_2)$. OLS with the selected sample is inconsistent.

$$E(y_{1i}|x_{1i}, y_{2i} = 1) = x'_{1i}\beta_1 - \gamma\sigma_2 \ z_i \neq x'_{1i}\beta_1$$

- Inconsistency: omission of z_i . Heckman (1979): selectivity bias as misspecification.
- Inconsistency due to the correlation between u_{1i} y u_{2i} , , that is $\gamma \neq 0$.

Heckman's two-step estimator

Define $u_{1i}^* \equiv y_{1i} - x_{1i}'\beta_1 - \gamma^*z_i$, $\gamma^* \equiv -\gamma\sigma_2$. Solving:

$$y_{1i} = x'_{1i}\beta + \gamma^* z + u_{1i}^*$$

where, by construction $E(u_{1i}^*|x_{1i},y_{2i}=1)=0$.

- x_{1i} , z_i observable when $y_{2i}=1$: OLS of y_{1i} on x_{1i} and z_i using the selected sample gives consistent esimates of β_1 and γ^* .
- Problem: $z_i \equiv \lambda(x'_{2i}\beta_2/\sigma_2)$ is NOT observable, it depends on β_2 and σ_2 .

Note that $u_{2i} \sim N(0, \sigma_2^2)$, hence:

$$P(y_{2i} = 1) = P(y_{2i}^* > 0) = P(u_{2i}/\sigma_2 < x_{2i}'\beta_2/\sigma_2) = \Phi(x_{2i}'\delta)$$

- $P(y_{2i} = 1)$ is a probit model with unknown coefficients δ .
- x_{2i} and y_{2i} are observed for everybody: δ can be estimated using probit.
- Important: we cannot identify β_{2i} and σ_2 separately but $\delta = \beta_{2i}/\sigma_{2i}$.

This suggests the following two-stage method:

- Stage 1: Obtain estimates $\hat{\delta}$ based on the probit model $P(y_{2i}=1)=\Phi(x_{2i}'\delta)$ using the full sample. Predict z_i using $\hat{z}_i=\lambda(x_{2i}'\hat{\delta})$.
- Stage 2: Regress y_{2i} on x_{1i} and \hat{z}_i using the selected sample. This produces consistent estimates of β_1 and γ^* .

Practical remarks

- The method is consistent and asymptotically normal (method of moments estimator). Standard inference works fine.
- Careful with asympototic variance. The second stage is heteroskedastic. Requires correction. See Greene (Ch. 20).
- A test of H_0 : $\gamma=0$ may be used to check sample selectivity. Under H_0 , the regression model with the selected sample is homoskedastic, test can be based in a model without taking care of heteroskedasticity.
- Classic issue: low power when x_1 is very similar to x_2 .
- MLE? Requires bivariate normality. Complicated likelihood, rarely used.