Sample Selection Walter Sosa-Escudero Econ 507. Econometric Analysis. Spring 2012 April 23, 2012 ## Preliminaries 1) Truncated normal distribution $X \sim f(x)$, X|X < a: X truncated in a. Then $$f(x|X < a) = \frac{f(x)}{Pr(X < a)}$$ If $X \sim N(\mu, \sigma^2)$, and recalling that $$Pr(X < a) = Pr\left(1/\sigma(X - \mu) < 1/\sigma(a - \mu)\right) = Pr(z < \alpha),$$ $$\alpha \equiv (a - \mu)/\sigma, \quad z \equiv (x - \mu)/\sigma.$$ $$f(x|X < a) = \frac{\frac{1}{\sigma} \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{x - \mu}{\sigma}\right)^2\right]}{\Phi(\alpha)}$$ $$= \frac{(1/\sigma)\phi(z)}{\Phi(\alpha)}$$ Result (no proof): if $X \sim N(\mu, \sigma^2)$, then: $$E(X|X < a) = \mu - \sigma \frac{\phi(\alpha)}{\Phi(\alpha)}$$ - Truncated to the right: expected value moves to the left (general). - ullet How much? Depends on lpha and σ^2 - $\lambda(z) \equiv \phi(z)/\Phi(z)$ is known as the inverse Mills ratio ### Preliminaries 2) Latent variables and probits Recall the probit model: $$Pr(y = 1|x) = \Phi(x'\beta)$$ β can be consistently estimated by MLE based on a random sample (y_i, x_i) , $i = 1, \ldots, n$. Consider the regression model $$y^* = x'\beta^* + u, \qquad u \sim N(0, \sigma^2)$$ y^* not directly observable (a *latent* variable) but, instead, we observe $y=1[y^*>0].$ Which parameters of the regression models can be estimated consistently with this information? Note that: $$P(y = 1|x) = P(y^* > 0|x)$$ $$= P(u > -x'\beta^*|x)$$ $$= P(u < x'\beta^*|x)$$ $$= P(u/\sigma < x'\beta^*/\sigma \mid x)$$ $$= \Phi(x'\beta)$$ This is a *probit* model with $\beta \equiv \beta^*/\sigma$. Based on (y_i,x_i) , we can estimate β consistenly by MLE, even when we cannot estimate β^* and σ^2 separately. - σ^2 and β^* are not identified with the sample (y_i,x_i) . For example $\beta^*=10$ and $\sigma^2=2$ are observationally equivalent to the case $\beta^*=5$ y $\sigma^2=1$. - $\beta \equiv \beta^*/\sigma$ is identified. ## Sample selectivity #### Consider the regression model $$y_i^* = x_i'\beta + u_i$$ s_i is a *selectivity* variable: $s_i = 1$ observed, 0 if not. - We can think that there is a 'super sample' of size N of y_i^*, x_i, s_i and that we observe the 'sub sample' y_i^*, x_i , only when $s_i = 1$. - Example: female labor productivity ## OLS under selectivity With a random sample (y_i^*, x_i) , consistency relies on: $$E(u_i|x_i) = 0$$ which implies $E(y_i|x_i) = x_i'\beta$. Now we do not have a random sample, but one conditioned on $s_i=1.$ Taking conditional expectations: $$E(y_i|x_i, s_i = 1) = x_i'\beta + E(u_i|x_i, s_i = 1)$$ OLS based on the selected sample will be inconsistent, unless $E(u_i|x_i,s_i=1)=0.$ - Not every selectivity mechanism makes OLS inconsistent. - If u is independent of x, OLS still consistent (why?). - If s = g(x), OLS still consistent. - Examples: wages and education. Males with odd SSN. Males with formal education? ### An estimable model under selectivity Consider the following equations: $$\left\{ \begin{array}{lll} y_{1i} &=& x'_{1i} \ \beta_1 + u_{1i} & & \text{(regression)} \\ y_{2i^*} &=& x'_{2i} \ \beta_2 + u_{2i} & & \text{(selectivity)} \end{array} \right.$$ Let $$y_{2i} = 1[y_{2i}^* > 0]$$. Example: $y_{1i} =$ wage, regression equantion determines wages based on person's characteristics (x_{1i}) . $y_{2i} =$ net utility of work, x_{2i} are observed determinantes of utility. #### Assumptions: - (y_{2i}, x_{2i}) observed for everyone. - (y_{1i}, x_{1i}) observed only if $y_{2i} = 1$ (selected sample). - (u_{1i}, u_{2i}) are independent of x_{2i} and have zero mean. - $u_{2i} \sim N(0, \sigma_2^2)$. - **5** $E(u_{1i}|u_{2i}) = \gamma u_2$. No-observables can be related. ## Selectivity bias Here $s_i \equiv y_{2i}$. $$E(y_{1i}|x_{1i}, y_{2i} = 1) = x'_{1i}\beta_1 + E(u_{1i} | x_{1i}, y_{2i} = 1)$$ $$= x'_{1i}\beta_1 + E[E(u_{1i}|u_{2i}) | x_{1i}, y_{2i} = 1]$$ $$= x'_{1i}\beta_1 + E[\gamma u_{2i} | x_{1i}, y_{2i} = 1]$$ $$= x'_{1i}\beta_1 + \gamma E[u_{2i} | x_{1i}, y_{2i}^* > 0]$$ $$= x'_{1i}\beta_1 + \gamma E[u_{2i} | x_{1i}, u_{2i} < x'_{2i}\beta_2]$$ $$= x'_{1i}\beta_1 - \gamma \sigma_2 \lambda(x'_{2i}\beta_2/\sigma_2)$$ $$= x'_{1i}\beta_1 - \gamma \sigma_2 z_i \neq x'_{1i}\beta_1$$ with $z_i \equiv \lambda(x'_{2i}\beta_2/\sigma_2)$. OLS with the selected sample is inconsistent. $$E(y_{1i}|x_{1i}, y_{2i} = 1) = x'_{1i}\beta_1 - \gamma\sigma_2 \ z_i \neq x'_{1i}\beta_1$$ - Inconsistency: omission of z_i . Heckman (1979): selectivity bias as misspecification. - Inconsistency due to the correlation between u_{1i} y u_{2i} , , that is $\gamma \neq 0$. ## Heckman's two-step estimator Define $u_{1i}^* \equiv y_{1i} - x_{1i}'\beta_1 - \gamma^*z_i$, $\gamma^* \equiv -\gamma\sigma_2$. Solving: $$y_{1i} = x'_{1i}\beta + \gamma^* z + u_{1i}^*$$ where, by construction $E(u_{1i}^*|x_{1i},y_{2i}=1)=0$. - x_{1i} , z_i observable when $y_{2i}=1$: OLS of y_{1i} on x_{1i} and z_i using the selected sample gives consistent esimates of β_1 and γ^* . - Problem: $z_i \equiv \lambda(x'_{2i}\beta_2/\sigma_2)$ is NOT observable, it depends on β_2 and σ_2 . Note that $u_{2i} \sim N(0, \sigma_2^2)$, hence: $$P(y_{2i} = 1) = P(y_{2i}^* > 0) = P(u_{2i}/\sigma_2 < x_{2i}'\beta_2/\sigma_2) = \Phi(x_{2i}'\delta)$$ - $P(y_{2i} = 1)$ is a probit model with unknown coefficients δ . - x_{2i} and y_{2i} are observed for everybody: δ can be estimated using probit. - Important: we cannot identify β_{2i} and σ_2 separately but $\delta = \beta_{2i}/\sigma_{2i}$. This suggests the following two-stage method: - Stage 1: Obtain estimates $\hat{\delta}$ based on the probit model $P(y_{2i}=1)=\Phi(x_{2i}'\delta)$ using the full sample. Predict z_i using $\hat{z}_i=\lambda(x_{2i}'\hat{\delta})$. - Stage 2: Regress y_{2i} on x_{1i} and \hat{z}_i using the selected sample. This produces consistent estimates of β_1 and γ^* . ### Practical remarks - The method is consistent and asymptotically normal (method of moments estimator). Standard inference works fine. - Careful with asympototic variance. The second stage is heteroskedastic. Requires correction. See Greene (Ch. 20). - A test of H_0 : $\gamma=0$ may be used to check sample selectivity. Under H_0 , the regression model with the selected sample is homoskedastic, test can be based in a model without taking care of heteroskedasticity. - Classic issue: low power when x_1 is very similar to x_2 . - MLE? Requires bivariate normality. Complicated likelihood, rarely used.