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Preliminaries 1) Truncated normal distribution

X ∼ f(x), X|X < a: X truncated in a. Then

f(x|X < a) =
f(x)

Pr(X < a)

If X ∼ N(µ, σ2), and recalling that

Pr(X < a) = Pr
(

1/σ(X − µ) < 1/σ(a− µ)
)

= Pr(z < α),

α ≡ (a− µ)/σ, z ≡ (x− µ)/σ.

f(x|X < a) =

1
σ

1√
2π

exp
[
−1

2

(x−µ
σ

)2]
Φ(α)

=
(1/σ)φ(z)

Φ(α)
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Result (no proof): if X ∼ N(µ, σ2), then:

E(X|X < a) = µ− σ φ(α)

Φ(α)

Truncated to the right: expected value moves to the left
(general).

How much? Depends on α and σ2

λ(z) ≡ φ(z)/Φ(z) is known as the inverse Mills ratio
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Preliminaries 2) Latent variables and probits

Recall the probit model:

Pr(y = 1|x) = Φ(x′β)

β can be consistently estimated by MLE based on a random
sample (yi, xi), i = 1, . . . , n.

Consider the regression model

y∗ = x′β∗ + u, u ∼ N(0, σ2)

y∗ not directly observable (a latent variable) but, instead, we
observe y = 1[y∗ > 0].

Which parameters of the regression models can be estimated
consistently with this information?
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Note that:

P (y = 1|x) = P (y∗ > 0|x)

= P (u > −x′β∗|x)

= P (u < x′β∗|x)

= P (u/σ < x′β∗/σ | x)

= Φ(x′β)

This is a probit model with β ≡ β∗/σ.

Based on (yi, xi), we can estimate β consistenly by MLE, even
when we cannot estimate β∗ and σ2 separately.
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σ2 and β∗ are not identified with the sample (yi, xi). For
example β∗ = 10 and σ2 = 2 are observationally equivalent to
the case β∗ = 5 y σ2 = 1.

β ≡ β∗/σ is identified.
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Sample selectivity

Consider the regression model

y∗i = x′iβ + ui

si is a selectivity variable: si = 1 observed, 0 if not.

We can think that there is a ‘super sample’ of size N of
y∗i , xi, si and that we observe the ‘sub sample’ y∗i , xi, only
when si = 1.

Example: female labor productivity
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OLS under selectivity

With a random sample (y∗i , xi), consistency relies on:

E(ui|xi) = 0

which implies E(yi|xi) = x′iβ.

Now we do not have a random sample, but one conditioned on
si = 1. Taking conditional expectations:

E(yi|xi, si = 1) = x′iβ + E(ui|xi, si = 1)

OLS based on the selected sample will be inconsistent, unless
E(ui|xi, si = 1) = 0.
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Not every selectivity mechanism makes OLS inconsistent.

If u is independent of x, OLS still consistent (why?).

If s = g(x), OLS still consistent.

Examples: wages and education. Males with odd SSN. Males
with formal education?
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An estimable model under selectivity

Consider the following equations:{
y1i = x′1i β1 + u1i (regression)

y2i∗ = x′2i β2 + u2i (selectivity)

Let y2i = 1[y∗2i > 0].

Example: y1i = wage, regression equantion determines wages based on
person’s characteristics (x1i). y2i = net utility of work, x2i are observed
determinantes of utility.
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Assumptions:

1 (y2i, x2i) observed for everyone.

2 (y1i, x1i) observed only if y2i = 1 (selected sample).

3 (u1i, u2i) are independent of x2i and have zero mean.

4 u2i ∼ N(0, σ22).

5 E(u1i|u2i) = γ u2. No-observables can be related.
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Selectivity bias

Here si ≡ y2i.

E(y1i|x1i, y2i = 1) = x′1iβ1 + E(u1i | x1i, y2i = 1)

= x′1iβ1 + E
[
E(u1i|u2i) | x1i, y2i = 1

]
= x′1iβ1 + E

[
γu2i | x1i, y2i = 1

]
= x′1iβ1 + γE

[
u2i | x1i, y∗2i > 0

]
= x′1iβ1 + γE

[
u2i | x1i , u2i < x′2iβ2

]
= x′1iβ1 − γσ2 λ(x′2iβ2/σ2)

= x′1iβ1 − γσ2 zi 6= x′1iβ1

with zi ≡ λ(x′2iβ2/σ2). OLS with the selected sample is
inconsistent.
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E(y1i|x1i, y2i = 1) = x′1iβ1 − γσ2 zi 6= x′1iβ1

Inconsistency: omission of zi. Heckman (1979): selectivity
bias as misspecification.

Inconsistency due to the correlation between u1i y u2i, , that
is γ 6= 0.
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Heckman’s two-step estimator

Define u∗1i ≡ y1i − x′1iβ1 − γ∗zi, γ∗ ≡ −γσ2. Solving:

y1i = x′1iβ + γ∗z + u∗1i

where, by construction E(u∗1i|x1i, y2i = 1) = 0.

x1i, zi observable when y2i = 1: OLS of y1i on x1i and zi
using the selected sample gives consistent esimates of β1 and
γ∗.

Problem: zi ≡ λ(x′2iβ2/σ2) is NOT observable, it depends on
β2 and σ2.
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Note that u2i ∼ N(0, σ22), hence:

P (y2i = 1) = P (y∗2i > 0) = P (u2i/σ2 < x′2iβ2/σ2) = Φ(x′2iδ)

P (y2i = 1) is a probit model with unknown coefficients δ.

x2i and y2i are observed for everybody: δ can be estimated
using probit.

Important: we cannot identify β2i and σ2 separately but
δ = β2i/σ2i.
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This suggests the following two-stage method:

Stage 1: Obtain estimates δ̂ based on the probit model
P (y2i = 1) = Φ(x′2iδ) using the full sample. Predict zi using
ẑi = λ(x′2iδ̂).

Stage 2: Regress y2i on x1i and ẑi using the selected sample.
This produces consistent estimates of β1 and γ∗.
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Practical remarks

The method is consistent and asymptotically normal (method
of moments estimator). Standard inference works fine.

Careful with asympototic variance. The second stage is
heteroskedastic. Requires correction. See Greene (Ch. 20).

A test of H0 : γ = 0 may be used to check sample selectivity.
Under H0, the regression model with the selected sample is
homoskedastic, test can be based in a model without taking
care of heteroskedasticity.

Classic issue: low power when x1 is very similar to x2.

MLE? Requires bivariate normality. Complicated likelihood,
rarely used.
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